Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T06:18:14.431Z Has data issue: false hasContentIssue false

Comparison of Herbicide Tactics to Minimize Species Shifts and Selection Pressure in Glyphosate-Resistant Soybean

Published online by Cambridge University Press:  20 January 2017

Gregg Johnson*
Affiliation:
Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108
Fritz Breitenbach
Affiliation:
University of Minnesota Extension Regional Center, Rochester, MN 55904
Lisa Behnken
Affiliation:
University of Minnesota Extension Regional Center, Rochester, MN 55904
Ryan Miller
Affiliation:
University of Minnesota Extension Regional Center, Rochester, MN 55904
Tom Hoverstad
Affiliation:
Southern Research and Outreach Center, University of Minnesota, Waseca, MN 56093
Jeffrey Gunsolus
Affiliation:
Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108
*
Corresponding author's E-mail: johns510@umn.edu

Abstract

There are significant concerns over the long- and short-term implications of continuous glyphosate use and potential problems associated with weed species shifts and the development of glyphosate-resistant weed species. Field research was conducted to determine the effect of herbicide treatment and application timing on weed control in glyphosate-resistant soybean. Ten herbicide treatments were evaluated that represented a range of PPI, PRE, and POST-only application timings. All herbicide treatments included a reduced rate of glyphosate applied POST. PRE herbicides with residual properties followed by (fb) glyphosate POST provides more effective control of broadleaf weed species than POST-only treatments. There was no difference in soybean yield between PRE fb POST and POST-only treatments in 2008. Conversely, PRE fb POST herbicide treatments resulted in greater yield than POST-only treatments in 2009. Using PRE fb POST herbicide tactics improves weed control and reduces the risk for crop yield loss when dealing with both early- and late-emerging annual broadleaf weed species across variable cropping environments.

Existen preocupaciones importantes sobre las implicaciones a largo y corto plazo del uso continuo de glifosato y los problemas potenciales asociados con los cambios en las comunidades de malezas y el desarrollo de especies de malezas resistentes al glifosato. Se realizaron investigaciones de campo para determinar el efecto de los tratamientos y momentos de aplicación de herbicidas en el control de malezas en soya resistente al glifosato. Se evaluaron diez tratamientos de herbicida que representaron una variedad de momentos de aplicación PPI, PRE y POST-solamente. Todos los tratamientos incluyeron una dosis reducida de glifosato aplicado POST. Los herbicidas PRE con propiedades residuales seguidos de glifosato POST proporcionaron un control más eficaz de malezas de hoja ancha que los tratamientos solamente POST. No hubo ninguna diferencia en el rendimiento de la soya entre los tratamientos PRE seguidos por POST y los solamente POST en 2008. En cambio, en 2009, los tratamientos PRE seguidos por (fb) POST tuvieron como resultado mayor rendimiento que los tratamientos solamente POST. El uso de tácticas de que incluyan herbicidas PRE seguidos por POST mejora el control de malezas y reduce el riesgo de pérdidas en el rendimiento del cultivo cuando se trata con malezas anuales de hoja ancha, tempranas y tardías, en ambientes variables de cultivo.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Corrigan, K. A. and Harvey, R. G. 2000. Glyphosate with and without residual herbicides in no-till glyphosate-resistant soybean. Weed Technol. 14:569577.Google Scholar
Dill, G. M., Jacob, C. A., and Padgette, S. R. 2008. Glyphosate-resistant crops: adoption, use and future considerations. Pest. Manag. Sci. 64:326331.Google Scholar
Ellis, J. M. and Griffin, J. L. 2002. Benefits of soil-applied herbicides in glyphosate-resistant soybean. Weed Technol. 16:541547.Google Scholar
Givens, W. A., Shaw, D. R., Johnson, W. G., Weller, S. C., Young, B. G., Wilson, R. G., Owen, M. D. K., and Jordon, D. 2009. A grower survey of herbicide use patterns in glyphosate-resistant cropping systems. Weed Technol. 23:156161.Google Scholar
Gonzini, L. C., Hart, S. E., and Wax, L. M. 1999. Herbicide combinations for weed management in glyphosate-resistant soybean. Weed Technol. 13:354360.Google Scholar
Grichar, W. J. 2006. Using soil-applied herbicides in glyphosate-resistant soybeans along the Texas gulf coast. Weed Technol. 20:633639.Google Scholar
Gustafson, D. I. 2008. Sustainable use of glyphosate in North American cropping systems. Pest Manag. Sci. 64:409416.Google Scholar
Heap, I. 2011. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: February 8, 2011.Google Scholar
Hilgenfeld, K. L., Martin, A. R., Mortensen, D. A., and Mason, S. C. 2004. Weed management in glyphosate resistant soybean: weed emergence patterns in relation to glyphosate treatment timing. Weed Technol. 18:277283.Google Scholar
Johnson, W. G., Davis, V. M., Kruger, G. R., and Weller, S. 2009. Influence of glyphosate-resistant cropping systems on weed species shifts and glyphosate-resistant weed populations. Eur. J. Agron. 31:162172.Google Scholar
Knezevic, S. Z., Datta, A., Scott, J., Klein, R. N., and Golus, J. 2009. Problem weed control in glyphosate-resistant soybean with glyphosate tank mixes and soil-applied herbicides. Weed Technol. 23:507512.Google Scholar
Legleiter, T. R., Bradley, K. W., and Massey, R. E. 2009. Glyphosate-resistant waterhemp control and economic returns with herbicide treatments in soybean. Weed Technol. 23:5461.Google Scholar
Mulugeta, D. and Boerboom, C. M. 2000. Critical time of weed removal in glyphosate-resistant Glycine max . Weed Sci. 48:3542.Google Scholar
Stewart, C. L., Nurse, R. E., Hamill, A. S., and Sikkema, P. H. 2010. Environmental and soil conditions influence pre- and postemergence herbicide efficacy in soybean. Weed Technol. 24:234243.Google Scholar
VanGessel, M. J., Ayeni, A. O., and Majek, B. A. 2000. Optimum glyphosate timing with or without residual herbicides in glyphosate-resistant soybean under full-season conventional tillage. Weed Technol. 14:140149.Google Scholar
Westhoven, A. M., Stachler, J. M., Loux, M. M., and Johnson, W. G. 2008. Management of glyphosate-tolerant common lambsquarters in glyphosate-resistant soybean. Weed Technol. 22:628634.Google Scholar
Westra, P., Wilson, R. G., Miller, S. D., Stahlman, P. W., Wicks, G. W., Chapman, P. L., Withrow, J., Legg, D., Alford, C., and Gaines, T. 2008. Weed population dynamics after six years under glyphosate- and conventional herbicide-based weed control strategies. Crop Sci. 48:11701177.Google Scholar
Young, B. G. 2006. Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol. 20:301307.Google Scholar