Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T12:40:58.779Z Has data issue: false hasContentIssue false

Consultant Perspectives on Weed Management Needs in Midsouthern United States Cotton: A Follow-Up Survey

Published online by Cambridge University Press:  20 January 2017

Dilpreet S. Riar*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, 1366 West Altheimer Drive, Fayetteville, AR 72704
Lawrence E. Steckel
Affiliation:
Department of Plant Sciences, University of Tennessee, 605 Airways Boulevard, Jackson, TN 38301
Daniel O. Stephenson IV
Affiliation:
Dean Lee Research Station, LSU AgCenter, 8105 Tom Bowman Drive, Alexandria, LA 71302
Jason A. Bond
Affiliation:
Delta Research and Extension Center, 82 Stoneville Road, Stoneville, MS 38776
*
Corresponding author's E-mail: driar@uark.edu.

Abstract

A survey questionnaire was sent to cotton consultants of Arkansas and Mississippi through direct mail and Louisiana and Tennessee consultants through on-farm visits in fall of 2011. The survey was returned by a total of 22 Arkansas, 17 Louisiana, 10 Mississippi, and 11 Tennessee cotton consultants, representing 26, 53, 13, and 38% of total cotton planted in these states in 2011, respectively. Collectively, the area planted to glyphosate-resistant (Roundup Ready®, RR) cotton was 97%, glyphosate plus glufosinate-resistant (Widestrike® Flex, WRF) cotton was 30%, and glufosinate-resistant (Liberty Link, LL) cotton was 2.6% of the total cotton surveyed in 2011. Seventy percent of area in all states is still under continuous RR/WRF cotton. Average cost of herbicides in RR systems was $114 ha−1 and in LL systems was $137 ha−1. Across the states, cotton planted under no-tillage, conservation tillage, and conventional tillage was 31, 36, and 33%, respectively, of total scouted cotton. Area under conventional tillage increased and conservation tillage decreased in Arkansas compared with a previous survey conducted in 2006. Palmer amaranth, morningglories, and horseweed in the order of listing were the most problematic weeds of cotton across Arkansas, Mississippi, and Tennessee. In Louisiana, however, morningglories were the most problematic weed followed by Palmer amaranth and common waterhemp. Glyphosate-resistant (GR) Palmer amaranth infested only 13% of scouted cotton area in Louisiana compared with 75% in the remaining three states, and consequently, hand-weeding to control GR Palmer amaranth is practiced on only 2.5% of total scouted area of Louisiana and 49% of the scouted area of the remaining three states. Hand-weeding added an additional $12 to 371 ha−1 to weed-management costs. One-half (50%) of the cotton consultants emphasized the need for more research on residual herbicides that can control GR Palmer amaranth effectively.

Se envió una encuesta a consultores en producción de algodón de Arkansas y Mississippi mediante correo directo y de Louisiana y Tennessee mediante visitas en finca en el otoño 2011. La encuesta fue completada y devuelta por 22 consultores de Arkansas, 17 de Louisiana, 10 de Mississippi, y 11 de Tennessee, lo que representó 26, 56, 13, y 38% del total del área sembrada con algodón en estos estados en 2011, respectivamente. Colectivamente, el área sembrada con algodón resistente a glyphosate (Roundup Ready®, RR) fue 97%, resistente a glyphosate más glufosinate (Widestrike® Flex, WRF) fue 30%, y resistente a glufosinate (Liberty Link, LL) fue 2.6% del total de la muestra en 2011. El 70% del área en todos los estados está todavía bajo algodón RR/WRF continuo. El costo promedio de los herbicidas en sistemas RR fue $114 ha−1 y en sistemas LL fue $137 ha−1. Entre todos los estados, el algodón sembrado bajo labranza cero, labranza de conservación, y labranza convencional fue 31, 36, y 33%, respectivamente, del total del algodón muestreado. El área con labranza convencional incrementó y con labranza de conservación disminuyó en Arkansas al compararse con la encuesta anterior realizada en 2006. Las malezas Amaranthus palmeri, Ipomoea spp., y Conyza canadensis fueron las más problemáticas en orden de mención, en Arkansas, Mississippi, y Tennessee. En Louisiana, sin embargo, Ipomoea spp. fueron las más problemáticas seguidas por A. palmeri y Amaranthus rudis. A. palmeri resistente a glyphosate (GR) infestó solamente 13% del área de algodón evaluada en Louisiana, comparado con 75% en los otros tres estados, y consecuentemente, el control manual de A. palmeri GR fue practicado en solamente 2.5% del total del área evaluada de Louisiana y 49% del área en los otros tres estados. La deshierba manual agregó un costo adicional al manejo de malezas de $12 a 371 ha−1. La mitad (50%) de los consultores en producción de algodón hicieron énfasis en la necesidad de que haya más investigación sobre herbicidas residuales para el control efectivo de A. palmeri GR.

Type
Education/Extension
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barnes, L. D. and Whitmore, R. W. 1990. The use of Prowl herbicide as a preemergence treatment in an irrigated reduced tillage cotton production system. Proc. Beltwide Cotton Conf. 14:349350.Google Scholar
Bourland, F. M., Beach, A. B., Hornbeck, J. M., and Hood, A. J. 2009. Arkansas Cotton Variety Test 2008. University of Arkansas Agricultural Experiment Station Research Series. 567:20.Google Scholar
Bryson, C. T., Reddy, K. N., and Molin, W. T. 2003. Purple nutsedge (Cyperus rotundus) population dynamics in narrow row transgenic cotton (Gossypium hirsutum) and soybean (Glycine max) rotation. Weed Technol. 17:805810.CrossRefGoogle Scholar
Busi, R., Neve, P., and Powles, S. 2013. Evolved polygenic herbicide resistance in Lolium rigidum by low-dose herbicide selection within standing genetic variation. Evol. Appl. 6:231242.CrossRefGoogle ScholarPubMed
Cardina, J., Herms, C. P., and Doohan, D. J. 2002. Crop rotation and tillage system effects on weed seedbanks. Weed Sci. 50:448460.CrossRefGoogle Scholar
DeVore, J. D., Norsworthy, J. K., and Brye, K. 2013. Influence of deep tillage, a rye cover crop, and various soybean production systems on Palmer amaranth emergence in soybean. Weed Technol. 27:263270.CrossRefGoogle Scholar
Dickson, J. W., Scott, R. C., Burgos, N. R., Salas, R. A., and Smith, K. L. 2011. Confirmation of glyphosate-resistant Italian ryegrass (Lolium perenne ssp. multiflorum) in Arkansas. Weed Technol. 25:674679.CrossRefGoogle Scholar
Givens, W. A., Shaw, D. R., Kruger, G. R., Johnson, W. G., Weller, S. C., Young, B. G., Wilson, R. G., Owen, M.D.K., and Jordan, D. 2009. Survey of tillage trends following the adoption of glyphosate-resistant crops. Weed Technol. 23:150155.CrossRefGoogle Scholar
Green, J. M. and Owen, M.D.K. 2011. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management. J. Agric. Food Chem. 59:58195829.CrossRefGoogle ScholarPubMed
Hammond, E. 2010. Genetically engineered backslide: The impact of glyphosate-resistant Palmer pigweed on agriculture in the United States. TWN Biotechnology and BioSafety Series 12. Pp. 122.Google Scholar
Heap, I. 2013. The International Survey of Herbicide Resistant Weeds. http://www.wssa.net. Accessed April 8, 2013.Google Scholar
Jordan, D. L., York, A. C., Griffin, J. L., Clay, P. A., Vidrine, P. R., and Reynolds, D. B. 1997. Influence of application variables on efficacy of glyphosate. Weed Technol. 11:354362.CrossRefGoogle Scholar
Kruger, G. R., Johnson, W. G., Weller, S. C., Owen, M.D.K., Shaw, D. R., Wilcut, J. W., Jordan, D. L., Wilson, R. G., Bernards, M. L., and Young, B. G. 2009. U.S. grower views on problematic weeds and changes in weed pressure in glyphosate-resistant corn, cotton, and soybean cropping systems. Weed Technol. 23:162166.CrossRefGoogle Scholar
Mueller, T. C., Mitchell, P. D., Young, B. G., and Culpepper, A. S. 2005. Proactive versus reactive management of glyphosate-resistant or -tolerant weeds. Weed Technol. 19:924933.CrossRefGoogle Scholar
Nandula, V. K., Reddy, K. N., Koger, C. H., Poston, D. H., Rimando, A. M., Duke, S. O., Bond, J. A., and Ribeiro, D. N. 2012. Multiple resistance to glyphosate and pyrithiobac in Palmer amaranth (Amaranthus palmeri) from Mississippi and response to flumiclorac. Weed Sci. 60:179188.CrossRefGoogle Scholar
Neve, P., Norsworthy, J. K., Smith, K. L., and Zelaya, I. 2011. Modeling glyphosate resistance management strategies for Palmer amaranth in cotton. Weed Technol. 25:335343.CrossRefGoogle Scholar
Neve, P. and Powles, S. 2005. Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum . Theor. Appl. Genet. 110:11541166.CrossRefGoogle ScholarPubMed
Nichols, R. L., Bond, J., Culpepper, A. S., Dodds, D., Nandula, V., Main, C. L., Marshall, M. W., and York, A.C. 2009. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) spreads in the Southern United States. Resist. Pest Manag. Newsl. 18:810.Google Scholar
Norsworthy, J. K., Griffith, G. M., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008. Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol. 22:108113.CrossRefGoogle Scholar
Norsworthy, J. K. and Oliver, L. R. 2002. Effect of irrigation, soybean density, and glyphosate on hemp sesbania (Sesbania exaltata) and pitted morningglory (Ipomoea lacunosa) interference in soybean. Weed Technol. 16:717.CrossRefGoogle Scholar
Norsworthy, J. K., Smith, K. L., Scott, R. C., and Gbur, E. E. 2007. Consultant perspectives on weed management needs in Arkansas cotton. Weed Technol. 21:825831.CrossRefGoogle Scholar
Norsworthy, J. K., Ward, S. M., Shaw, D. R., Llewellyn, R. S., Nichols, R. L., Webster, T. M., Bradley, K. W., Frisvold, G., Powles, S. B., Burgos, N. R., Witt, W. W., and Barrett, M. 2012. Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci. (Special Issue) 60:3162.Google Scholar
Prince, J. M., Shaw, D. R., Givens, W. A., Owen, M.D.K., Weller, S. C., Young, B. G., Wilson, R. G., and Jordan, D. L. 2012a. Benchmark Study: I. Introduction, weed population, and management trends from the Benchmark Survey 2010. Weed Technol. 26:525530.CrossRefGoogle Scholar
Prince, J. M., Shaw, D. R., Givens, W. A., Owen, M.D.K., Weller, S. C., Young, B. G., Wilson, R. G., and Jordan, D. L. 2012b. Benchmark Study: IV. Survey of grower practices for managing glyphosate-resistant weed populations. Weed Technol. 26:543548.CrossRefGoogle Scholar
Price, A. J., Balkcom, K. S., Culpepper, S. A., Kelton, J. A., Nichols, R. L., and Schomberg, H. 2011. Glyphosate-resistant Palmer amaranth: A threat to conservation tillage. J. Soil Water Conserv. 66:265275.CrossRefGoogle Scholar
Riar, D. S., Norsworthy, J. K., and Griffith, G. M. 2011a. Herbicide programs for enhanced glyphosate-resistant and glufosinate-resistant cotton (Gossypium hirsutum). Weed Technol. 25:526534.CrossRefGoogle Scholar
Riar, D. S., Norsworthy, J. K., Johnson, D. B., Scott, R. C., and Bagavathiannan, M. 2011b. Glyphosate resistance in a johnsongrass (Sorghum halepense) biotype from Arkansas. Weed Sci. 59:299304.CrossRefGoogle Scholar
Riar, D. S., Norsworthy, J. K., Steckel, L. E., Stephenson, D. O. IV, Eubank, T. W., and Scott, R. C. 2013. Assessment of weed management practices and problem weeds in the midsouthern United States soybean: a consultant's perspective. Weed Technol. 27:788797.CrossRefGoogle Scholar
Rowland, M. W., Murray, D. S., and Verhalen, L. M. 1999. Full-season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci. 47:305309.CrossRefGoogle Scholar
Scott, R. C., Boyd, J. W., Smith, K. L., Selden, G., and Norsworthy, J. K. 2012. Recommended Chemicals for Weed and Brush Control. Page 36, University of Arkansas Division of Agriculture, Cooperative Extension Service, Miscellaneous Publication 44.Google Scholar
Shaw, D. R. and Arnold, J. C. 2002. Weed control from herbicide combinations with glyphosate. Weed Technol. 16:16.CrossRefGoogle Scholar
Shaw, D. R., Givens, W. A., Farno, L. A., Gerard, P. D., Jordan, D., Johnson, W. G., Weller, S. C., Young, B. G., Wilson, R. G., and Owen, M.D.K. 2009. Using a grower survey to assess the benefits and challenges of glyphosate-resistant cropping systems for weed management in U.S. corn, cotton, and soybean. Weed Technol. 23:134149.CrossRefGoogle Scholar
Sosnoskie, L. M. and Culpepper, S. 2012. Changes in cotton weed management practices in Georgia following the development of glyphosate-resistant Palmer amaranth. Proc. 2012 Beltwide Cotton Conference. http://www.gaweed.com/slides/beltwide-sosnoskiesurvey/beltwide-sosnoskiesurvey.pdf. Accessed April 12, 2013.Google Scholar
Steckel, L. E. 2011. Glyphosate-resistant weeds: lessons learned in Tennessee. Proc. CPM shortcourse and MCPR Trade Show. http://www.extension.umn.edu/AgProfessionals/components/CPM/2011/Steckel.pdf. Accessed April 12, 2013.Google Scholar
Steckel, L. E., Main, C. L., Ellis, A. T., and Mueller, T. C. 2008. Palmer amaranth (Amaranthus palmeri) in Tennessee has low-level glyphosate resistance. Weed Technol. 22:119123.CrossRefGoogle Scholar
[USDA-NASS] United States Department of Agriculture, National Agricultural Statistics Service. 2012. Acreage: http://www.usda.gov/nass/PUBS/TODAYRPT/acrg0612.pdf. Accessed April 5, 2013.Google Scholar
Vebree, D. 2013. Effect of maturity and row-spacing on yield of irrigated soybeans. in Proceedings of the 2013 Beltwide Cotton Conference. Cordova, TN National Cotton Council of America. In press.Google Scholar
Webster, T. M. and MacDonald, G. E. 2001. A survey of weeds in various crops in Georgia. Weed Technol. 15:771790.CrossRefGoogle Scholar