Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T22:17:07.530Z Has data issue: false hasContentIssue false

Impact of Off-Site Deposition of Glufosinate to Non-Clearfield Rice

Published online by Cambridge University Press:  20 January 2017

Eric P. Webster*
Affiliation:
School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, 104 Sturgis Hall, Baton Rouge, LA 70803
Justin B. Hensley
Affiliation:
School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, 104 Sturgis Hall, Baton Rouge, LA 70803
David C. Blouin
Affiliation:
Department of Experimental Statistics, Louisiana State University, 45 Agricultural Administration Building, Baton Rouge, LA 70803
Dustin L. Harrell
Affiliation:
Louisiana State University Agricultural Center Rice Research Station, 1373 Caffey Road, Rayne, LA 70578
Jason A. Bond
Affiliation:
Delta Research and Extension Center, Mississippi Agricultural and Forestry Experiment Station, Stoneville, MS
*
Corresponding author's E-mail: ewebster@agcenter.lsu.edu.

Abstract

Field studies were conducted near Crowley, LA to evaluate the effects of simulated herbicide drift on ‘Cocodrie' rice. Each treatment was made with the spray volume varying proportionally to herbicide dosage based on a spray volume of 234 L ha−1 and a glufosinate rate of 493 g ai ha−1. The 6.3%, 31 g ha−1, herbicide rate was applied at a spray volume of 15 L ha−1 and the 12.5%, 62 g ha−1, herbicide rate was applied at a spray volume of 29 L ha−1. Glufosinate applied at one-tiller, panicle differentiation (PD) growth stage, and boot resulted in crop injury at 7 and 14 d after treatment. At 21 and 28 d after treatment, crop injury was still evident but was less than 10%. Glufosinate applied at one-tiller resulted in plant height reductions of 4 to 6%; however, at harvest, height reductions were 1% or less. Glufosinate applied to rice in the boot stage had lower rice yield in the primary crop, but no difference was observed in the ratoon crop. Harvested seed from the primary crop germinated 7 to 11% less than the nontreated when rice was treated with 31 and 62 g ha−1 of glufosinate. Seedling vigor was reduced when treated with 31 and 62 g ha−1 of glufosinate.

Se realizaron estudios de campo cerca de Crowley, Louisiana, para evaluar los efectos de la deriva simulada de herbicida sobre el arroz 'Cocodrie'. Cada tratamiento fue realizado con un volumen de aspersión que varió en forma proporcional a la dosis del herbicida, basándose en un volumen de aplicación de 234 L ha−1 y una dosis de glufosinate de 493 g ai ha−1. La dosis de herbicida de 6.3%, 31 g ha−1, fue realizada a con un volumen de 15 L ha−1 y la de 12.5%, 62 g ha−1, se hizo con un volumen de aspersión de 29 L ha−1. Cuando se aplicó glufosinate en el estadio de desarrollo de un hijuelo, diferenciación de panícula (PD), o en el de engrosamiento del tallo floral, el cultivo sufrió daño, 7 y 14 d después del tratamiento. A 21 y 28 d después del tratamiento, el daño del cultivo era todavía evidente, pero era menor a 10%. Glufosinate aplicado en el estadio de un hijuelo resultó en reducciones en altura de planta de 4 a 6%. Sin embargo, en la cosecha, las reducciones en altura fueron de 1% o menores. El glufosinate aplicado a arroz en el estadio de engrosamiento del tallo floral tuvo un menor rendimiento en el cultivo primario, pero no se observaron diferencias en el cultivo de la soca. La semilla cosechada del cultivo primario germinó 7 a 11% menos que el testigo sin tratamiento cuando el arroz fue tratado con 31 y 62 g ha−1 de glufosinate. El vigor de la plántula se redujo con los tratamientos de 31 y 62 g ha−1 de glufosinate.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Khatib, K, Claassen, MM, Stahlman, PW, Geier, PW, Regehr, DL, Duncan, SR, Heer, WF (2003) Grain sorghum response to simulated drift from glufosinate, glyphosate, imazethapyr and sethoxydim. Weed Technol 17:261265 Google Scholar
[AOSA] Association of Official Seed Analysts (2006) Rules for testing seeds. Stillwater, OK: Association of Official Seed Analysts. Pp 4.14.10 Google Scholar
Banks, PA, Schroeder, J (2002) Carrier volume affects herbicide activity in simulated spray drift studies. Weed Technol 16:833837 Google Scholar
Bennett, AC, Shaw, DR (2000) Effects of preharvest desiccants on weed seed production and viability. Weed Technol 14:530538 Google Scholar
Bouse, LF, Carlton, JB, Merkle, MG (1976) Spray recovery from nozzles designed to reduce drift. Weed Sci 24:361365 Google Scholar
Bovey, RW, Dahlberg, JA, Senseman, SA, Miller, FR, Madera-Torres, P (1999) Desiccation and germination of grain sorghum as affected by glufosinate. Agron J 91:373376 Google Scholar
Carmer, SG, Nyuist, WE, Walker, WM (1989) Least significant differences for combined analysis of experiments with two or three-factor treatment designs. Agron J 81:665672 Google Scholar
Crabbe, RS, McCooeye, M, Mickle, RE (1994) The influence of atmospheric stability on wind drift from ultra-low-volume aerial forest spray applications. J Appl Meteorol 33:500507 Google Scholar
Dunand, R, Saichuk, J (2014) Rice growth and development. Pages 4153 in Saichuk, J, ed. Louisiana Rice Production Handbook. Baton Rouge, LA: Louisiana State University AgCenter Publ 2321Google Scholar
Ellis, JM, Griffin, JL, Jones, CA (2002) Effects of carrier volume on corn (Zea mays) and soybean (Glycine max) response to simulated drift of glyphosate and glufosinate. Weed Technol 16:587592 Google Scholar
Ellis, JM, Griffin, JL, Linscombe, SD, Webster, EP (2003) Rice (Oryza sativa) and corn (Zea mays) response to simulated drift of glyphosate and glufosinate. Weed Technol 17:452460 Google Scholar
Everitt, JD, Keeling, JW (2009) Cotton growth and yield response to simulated 2,4-D and dicamba drift. Weed Technol 23:503506 Google Scholar
Hanks, JE (1995) Effects of drift retardant adjuvants on spray droplet size of water and paraffinic oil applied at ultralow volume. Weed Technol 9:380384 Google Scholar
Hensley, JB, Webster, EP, Blouin, DC, Harrell, DL, Bond, JA (2012) Impact of drift rates of imazethapyr and low carrier volume on non-Clearfield rice. Weed Technol 26:236242 Google Scholar
Hensley, JB, Webster, EP, Blouin, DC, Harrell, DL, Bond, JA (2013) Response of rice to drift rates of glyphosate applied at low carrier volumes. Weed Technol 27:257262 Google Scholar
Hensley, JB, Webster, EP, Harrell, DL, Bottoms, SL (2009) Herbicide drift effects Louisiana rice production. La Agric 52:67 Google Scholar
Hess, FD (2000) Light-dependent herbicides: an overview. Weed Sci 48:160170 Google Scholar
Jones, EJ, Hanks, JE, Willis, GD, Mack, RE (2007) Effect of two polysaccharide adjuvants on glyphosate spray droplet size and efficacy. Weed Technol 21:171174 Google Scholar
Krishnasamy, V, Seshu, DV (1989) Seed germination rate and associated characters in rice. Crop Sci 29:904908 Google Scholar
Lea, PJ, Joy, KW, Ramos, JL, Guerrero, MG (1984) The action of 2-amino-4-(methylphosphinyl)-butanoic acid (phosphinothricin) and its 2-oxo-derivative on the metabolism of cyanobacteria and higher plants. Phytochemistry 23:16 Google Scholar
Leon, CT, Webster, EP, Bottoms, SL, Blouin, DC (2008) Water management and chemical control of red rice (Oryza punctata) in water seeded imidazolinone-resistant rice. Weed Technol 22:132135 Google Scholar
Marple, M E, Al-Khatib, K, Peterson, DE (2008) Cotton injury and yield as affected by simulated drift of 2,4-D and dicamba. Weed Technol 22:609614 Google Scholar
[NASS] National Agricultural Statistics Service (2014) Louisiana Agricultural Statistics. http://www.nass.usda.gov/Charts_and_Maps/Crops_County/pdf/AR-PL13-RGBChor.pdf. Accessed January 23, 2015Google Scholar
Nuyttens, D, Baetens, K, De Schampheleire, M, Sonck, B (2007) Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst Eng 97:333345 Google Scholar
Pollock, BM, Roos, EE (1972) Seed and seedling vigor. Pages 313387 in Kozlowski, T.T., ed. Seed Biology, Volume 1. New York: Academic Press Google Scholar
Ramsdale, BK, Messersmith, CG, Nalewaja, JD (2003) Spray volume, formulation, ammonium sulfate, and nozzle effects on glyphosate efficacy. Weed Technol 17:589598 Google Scholar
Roider, CA, Griffin, JL, Harrison, SA, Jones, CA (2007) Wheat response to simulated glyphosate drift. Weed Technol 21:10101015 Google Scholar
Roider, CA, Griffin, JL, Harrison, SA, Jones, CA (2008) Carrier volume affects wheat response to simulated glyphosate drift. Weed Technol 22:453458 Google Scholar
Sauer, H, Wild, A, Ruhle, W (1987) The effects of phosphinothricin (glufosinate) on photosynthesis II. The causes of inhibition of photosynthesis. Z Naturforsch 42:270278 Google Scholar
Sawchuck, JW, Van Acker, RC, Friesen, LR (2006) Influence of a range of dosages of MCPA, glyphosate, and thifensulfuron :tribenuron (2 : 1) on conventional canola (Brassica napus) and white bean (Phaseolus vulgaris) growth and yield. Weed Technol 20:184197 Google Scholar
Senseman SA ed (2007) Herbicide Handbook. 9th ed. Lawrence, KS: Weed Science Society of America. Pp 247248 Google Scholar
[SDTF] Spray Drift Task Force (1997) A Summary of Aerial Application Studies. http://www.agdrift.com. Accessed October 12, 2009Google Scholar
[SAS] Statistical Analysis Systems (2003) Version 9.1. Cary, NC: Statistical Analysis Systems Institute Google Scholar
Tachibana, K, Watanabe, T, Sekizawa, Y, Takematsu, T (1986) Accumulation of ammonia in plants treated with Bialaphos. J Pestic Sci 11:3337 Google Scholar
Thistle, HW (2004) Meteorological concepts in the drift of pesticides. Proceedings of International Conference on Pesticide Application for Drift Management, October 27–29, Waikoloa, Hawaii. Pp 156162 Google Scholar
[USDAERS] U.S. Department of Agriculture Economic Research Service (2014) Rice Yearbook 2014. http://www.ers.usda.gov/data-products/rice-yearbook-2014.aspx. Accessed January 22, 2015Google Scholar
VanGessel, MJ, Johnson, QR (2005) Evaluating drift control agents to reduce short distance movement and effect on herbicide performance. Weed Technol 19:7885 Google Scholar
Walker, ER, Oliver, LR (2008) Weed seed production as influenced by glyphosate applications at flowering across a weed complex. Weed Technol 22:318325 Google Scholar
Webster, EP, Lanclos, DY, Zhang, W (2003) Influence of glufosinate on seed weight, seed germination, and seedling vigor of glufosinate-resistant rice. Weed Technol 17:5154 Google Scholar
Wild, A, Sauer, H, Ruhle, W (1987) The effects of phosphinothricin (glufosinate) on photosynthesis I. Inhibition of photosynthesis and accumulation of ammonia. Z Naturforsch 42:263269 Google Scholar
Wright, LN (1980) Germination rate and growth characteristics of blue panic grass. Crop Sci 20:4244 Google Scholar