Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T10:55:03.016Z Has data issue: false hasContentIssue false

Performance of Postemergence Herbicides Applied at Different Carrier Volume Rates

Published online by Cambridge University Press:  20 January 2017

Cody F. Creech
Affiliation:
Department of Agronomy and Horticulture, West Central Research and Extension Center, University of Nebraska–Lincoln, North Platte, NE 69101
Ryan S. Henry
Affiliation:
Department of Agronomy and Horticulture, West Central Research and Extension Center, University of Nebraska–Lincoln, North Platte, NE 69101
Rafael Werle
Affiliation:
College of Agricultural Sciences, São Paulo State University, Botucatu, SP, Brazil, 18610-307
Lowell D. Sandell
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Keim Hall, Lincoln, NE 68583
Andrew J. Hewitt
Affiliation:
Department of Agronomy and Horticulture, West Central Research and Extension Center, University of Nebraska–Lincoln, North Platte, NE 69101 and The University of Queensland, Gatton, Queensland 4343, Australia
Greg R. Kruger*
Affiliation:
Department of Agronomy and Horticulture, West Central Research and Extension Center, University of Nebraska–Lincoln, North Platte, NE 69101
*
Corresponding author's E-mail: gkruger2@unl.edu.

Abstract

POST weed control in soybean in the United States is difficult because weed resistance to herbicides has become more prominent. Herbicide applicators have grown accustomed to low carrier volume rates that are typical with glyphosate applications. These low carrier volumes are efficient for glyphosate applications and allow applicators to treat a large number of hectares in a timely manner. Alternative modes of action can require greater carrier volumes to effectively control weeds. Glyphosate, glufosinate, lactofen, fluazifop-P, and 2,4-D were evaluated in field and greenhouse studies using 47, 70, 94, 140, 187, and 281 L ha−1 carrier volumes. Spray droplet size spectra for each herbicide and carrier volume combination were also measured and used to determine their impact on herbicide efficacy. Glyphosate efficacy was maximized using 70 to 94 L ha−1 carrier volumes using droplets classified as medium. Glufosinate efficacy was maximized at 140 L ha−1 and decreased as droplet diameter decreased. For 2,4-D applications, efficacy increased when using carrier volumes equal to or greater than 94 L ha−1. Lactofen was most responsive to changes in carrier volume and performed best when applied in carrier volumes of at least 187 L ha−1. Carrier volume had little impact on fluazifop-P efficacy in this study and efficacy decreased when used on taller plants. Based on these data, applicators should use greater carrier volumes when using contact herbicides in order to maximize herbicide efficacy.

El control de malezas POST en soya en los Estados Unidos es difícil porque la resistencia a herbicidas de las malezas se ha hecho más prominente. Los aplicadores de herbicidas se han acostumbrado a usar bajos volúmenes de aplicación que son típicos en aplicaciones con glyphosate. Estos bajos volúmenes de aplicación son eficientes para aplicaciones con glyphosate y permiten a los aplicadores tratar un gran número de hectáreas en poco tiempo. Modos de acción alternativos pueden requerir mayores volúmenes de aplicación para controlar malezas efectivamente. Glyphosate, glufosinate, lactofen, fluazifop-P, y 2,4-D fueron evaluados en estudios de campo y de invernadero usando volúmenes de aplicación de 47, 70, 94, 140, 187, y 281 L ha−1. Se midió el espectro de tamaño de gota de aspersión para cada combinación de herbicida y volumen de aplicación y se determinó su impacto en la eficacia del herbicida. La eficacia de glyphosate se maximizó usando volúmenes de 70 a 94 L ha−1 y gotas clasificadas como medianas. La eficacia de glufosinate se maximizó a 140 L ha−1 y disminuyó al reducirse el diámetro de gota. Para las aplicaciones de 2,4-D, la eficacia incrementó cuando se usaron volúmenes iguales o mayores a 94 L ha−1. Lactofen respondió más a los cambios en volumen de aplicación y se desempeñó mejor cuando fue aplicado con volúmenes de al menos 187 L ha−1. El volumen de aplicación tuvo poco impacto sobre la eficacia de fluazifop-P en este estudio y la eficacia disminuyó cuando se usó en plantas más altas. Con base en estos datos, los aplicadores deberían usar mayores volúmenes de aplicación cuando se usan herbicidas de contacto con el objetivo de maximizar la eficacia de los herbicidas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, D, Swanton, C, Hall, J, Mersey, B (1993) The influence of temperature and relative humidity on the efficacy of glufosinate-ammonium. Weed Res 33:139147 CrossRefGoogle Scholar
[ASABE] American Society of Agricultural and Biological Engineers (2009) Spray nozzle classification by droplet spectra. St. Joseph, MI: American Society of Agricultural Engineers. 3 pGoogle Scholar
Baylis, AD (2000) Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Manag Sci 56:299308 3.0.CO;2-K>CrossRefGoogle Scholar
Berger, S, Dobrow, M, Ferrell, J, Webster, T (2014) Influence of carrier volume and nozzle selection on palmer amaranth control. Peanut Sci 41:120123 CrossRefGoogle Scholar
Beriault, JN, Horsman, GP, Devine, MD (1999) Phloem transport of D,L-glufosinate and acetyl-L-glufosinate in glufosinate-resistant and -susceptible Brassica napus . Plant Physiol 121:619628 Google Scholar
Brazes, R, Reichard, D, Bukovac, M, Fox, R (1991) A partitioned energy transfer model for spray impaction on plants. J Agric Eng Res 50:1124 Google Scholar
Burnham, KP, Anderson, DR (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. New York: Springer-Verlag. 488 pGoogle Scholar
Carmer, S, Nyquist, W, Walker, W (1989) Least significant differences for combined analyses of experiments with two- or three-factor treatment designs. Agron J 81:665672 CrossRefGoogle Scholar
Caseley, JC, Walker, A (1990) Entry and transport of herbicides in plants. Pages 183200 in Hance, RJ, Holly, K, eds. Weed Control Handbook: Principles. Oxford, UK: Blackwell Scientific Google Scholar
Chandrasena, NR, Sagar, GR (1989) Fluazifop toxicity to quackgrass (Agropyron repens) as influenced by some application factors and site of application. Weed Sci 37:790796 CrossRefGoogle Scholar
Coetzer, E, Al-Khatib, K, Loughin, TM (2009) Glufosinate efficacy, absorption, and translocation in amaranth as affected by relative humidity and temperature. Weed Sci 49:813 CrossRefGoogle Scholar
Creech, CF, Henry, RS, Fritz, BK, Kruger, GR (2015) Influence of herbicide active ingredient, nozzle type, orifice size, spray pressure, and carrier volume rate on spray droplet size characteristics. Weed Technol 29:298310.CrossRefGoogle Scholar
Davis, VM (2012) Integrating 2,4-D and dicamba resistant soybean into Wisconsin cropping systems. Pages 3637 in Proceedings of the 2012 Wisconsin Crop Management Conference. Vol. 51. Madison, WI University of Wisconsin Google Scholar
Ennis, W, Williamson, RE (1963) Influence of droplet size on effectiveness of low-volume herbicidal sprays. Weeds 11:6772 CrossRefGoogle Scholar
Etheridge, RE, Hart, WE, Hayes, RM, Mueller, TC (2001) Effect of venturi-type nozzles and application volume on postemergence herbicide efficacy. Weed Technol 15:7580 Google Scholar
Feng, PC, Chiu, T, Sammons, RD, Ryerse, JS (2003) Droplet size affects glyphosate retention, absorption, and translocation in corn. Weed Sci 51:443448 Google Scholar
Fernandez-Cornejo, J, Wechsler, SJ, Livingston, M (2014) Genetically Engineered Crops in the United States. ERR-162. Washington, DC: U.S. Department of Agriculture, Economic Research Service. 54 pGoogle Scholar
Fritz, B, Hoffmann, WC, Bagley, W, Kruger, G, Czaczyk, Z, Henry, R (2014) Measuring drop size of agricultural spray nozzles—measurement distance and airspeed effects. Atomization Sprays 24:747760 CrossRefGoogle Scholar
Graham-Bryce, I (1977) Crop protection: a consideration of the effectiveness and disadvantages of current methods and of the scope for improvement. Philos Trans R Soc London B Biol Sci 281:163179 Google Scholar
Hislop, E (1987) Requirements for effective and efficient pesticide application. Pages 5371 in Brent, KJ, Atkin, RK, eds. Rational Pesticide Use. Cambridge, UK: Cambridge University Press Google Scholar
Johnson, WG, Davis, VM, Kruger, GR, Weller, SC (2009) Influence of glyphosate-resistant cropping systems on weed species shifts and glyphosate-resistant weed populations. Eur J Agron 31:162172 Google Scholar
Knoche, M (1994) Effect of droplet size and carrier volume on performance of foliage-applied herbicides. Crop Prot 13:163178 CrossRefGoogle Scholar
Littell, RC, Milliken, GA, Stroup, WW, Wolfinger, RD, Schabenberger, O (2006) SAS for Mixed Models. 2nd edn. Cary, NC: SAS Institute. 780 pGoogle Scholar
Liu, SH, Campbell, RA, Studens, JA, Wagner, RG (1996) Absorption and translocation of glyphosate in Aspen (Populus tremuloides Michx.) as influenced by droplet size, droplet number, and herbicide concentration. Weed Sci 44:482488 Google Scholar
Matthews, G (1977) C.d.a.—controlled droplet application. Int J Pest Manag 23:387394 Google Scholar
McKinlay, K, Brandt, S, Morse, P, Ashford, R (1972) Droplet size and phytotoxicity of herbicides. Weed Sci 20:450452 CrossRefGoogle Scholar
Merritt, C, Graham, B, Dar, W, Javed, Z (1989) Comparison of spray losses in laboratory and field situations. Asp Appl Biol 21:137146 Google Scholar
Ramsdale, BK, Messersmith, CG, Nalewaja, JD (2003) Spray volume, formulation, ammonium sulfate, and nozzle effects on glyphosate efficacy Weed Technol 17:589598 CrossRefGoogle Scholar
Reichard, DL (1988) Drop formation and impaction on the plant. Weed Technol 2:8287 Google Scholar
Rogers, RB (1989) The application of herbicides with ultra-small drops. Pages 93102 in Chow, PNP, Grant, CA, Hinshalwood, AM, Simundsson, E, eds. Adjuvants for Agrochemicals. Vol. 11. Recent Development, Application, and Bibliography of Agro-Adjuvants. Boca Raton, FL: CRC Press Google Scholar
Sandberg, C, Meggitt, W, Penner, D (1978) Effect of diluent volume and calcium on glyphosate phytotoxicity. Weed Sci 26:476479 Google Scholar
Shaner, DL (2000) The impact of glyphosate-tolerant crops on the use of other herbicides and on resistance management. Pest Manag Sci 56:320326 Google Scholar
Smeda, RJ, Putnam, AR (1989) Effect of adjuvant concentration and carrier volume on large crabgrass (Digitaria sanguinalis) control with fluazifop. Weed Technol 3:105109 CrossRefGoogle Scholar
Smith, HH (1946) Quantitative aspects of aqueous spray applications of 2,4-D acid for herbicidal purposes. Bot Gaz 107:544551 CrossRefGoogle Scholar
Steel, RGD, Torrie, JH (1980) Principles and Procedures of Statistics: A Biometrical Approach. 2nd edn. New York, NY: McGraw-Hill Kogakusha, Ltd Google Scholar
van de Zande, JC, Parkin, CS, Gilbert, AJ (2003) Application technologies. Pages 2344 in Wilson, M, ed. Optimising Pesticide Use. Chichester, UK: Wiley CrossRefGoogle Scholar