Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T02:35:31.016Z Has data issue: false hasContentIssue false

Vegetable Crop Response to EPTC Applied Preemergence Under Low-Density Polyethylene and High Barrier Plastic Mulch

Published online by Cambridge University Press:  20 January 2017

Rebekah D. Wallace*
Affiliation:
University of Georgia, Department of Crop and Soil Sciences, 115 Coastal Way, Tifton, GA 31794
A. Stanley Culpepper
Affiliation:
University of Georgia, Department of Crop and Soil Sciences, 115 Coastal Way, Tifton, GA 31794
Andrew W. MacRae
Affiliation:
University of Florida, Department of Horticultural Sciences, 14625 Cr 672, Wimauma, FL 33598
Lynn M. Sosnoskie
Affiliation:
University of Georgia, Department of Crop and Soil Sciences, 115 Coastal Way, Tifton, GA 31794
Timothy L. Grey
Affiliation:
University of Georgia, Department of Crop and Soil Sciences, 115 Coastal Way, Tifton, GA 31794
*
Corresponding author's E-mail: bekahwal@uga.edu

Abstract

The continued phase-out of methyl bromide (MBr) challenges vegetable growers' abilities to control weeds in plasticulture production. Herbicides, such as EPTC (S-ethyl dipropylthiocarbamate), may be needed as part of a MBr alternative system. An experiment was conducted during the springs of 2008 and 2009 in Ty Ty, GA, to determine tomato, pepper, eggplant, and watermelon tolerance to EPTC applied under mulch. Treatments consisted of a factorial arrangement of four rates of EPTC (0, 2, 3, or 4 kg ai ha−1) and two plastic mulch types (low density polyethylene [LDPE] mulch or a high barrier mulch [HBM]). Each crop was planted 28 d after applying herbicides and laying mulch. EPTC, regardless of rate, applied under LDPE mulch did not impact plant growth, fruit number produced, or fruit weights for any crop. Conversely, pepper, tomato, and eggplant heights were reduced 65 to 72%, 30 to 75%, and 9 to 32%, respectively, by EPTC at 2 to 4 kg ai ha−1 when applied under HBM. Similar trends were observed for crop yield; fruit number and weight were reduced by 71 to 84% for pepper, 36 to 76% for tomato, and 7 to 15% for eggplant when EPTC was applied at 2 to 4 kg ai ha−1 as compared to the no EPTC HBM control. Watermelon stem lengths, fruit number, and fruit weights were not impacted by EPTC applied under HBM mulch. It appears as though HBMs reduce the loss of EPTC through volatilization, thereby increasing the dose present at time of planting. EPTC could be included as part of a MBr alternative system for tomato, pepper, eggplant, and watermelon when applied under LDPE mulch, and may also be applied at labeled rates with the HBM utilized in this experiment for watermelon.

El proceso de salida del mercado del bromuro de metilo (MBr) es un desafío en las habilidades de los agricultores para controlar la maleza en sistemas de producción de hortalizas en plasticultura. Herbicidas tales como EPTC, pueden ser necesarios como parte de un sistema alternativo al MBr. Durante la primavera de 2008 y 2009 se realizó un experimento en Ty Ty, GA para determinar la tolerancia del tomate, pimiento, berenjena y sandía al EPTC aplicado bajo cubierta. Los tratamientos consistieron en un arreglo factorial de cuatro dosis de EPTC (0, 2, 3 o 4 kg ia ha−1) y dos tipos de cubierta de plástico (polietileno de baja densidad [LDPE] o una cubierta de barrera alta [HBM]). Cada cultivo fue sembrado 28 días después de aplicar los herbicidas y de colocar las cubiertas. Sin importar la dosis, el EPTC aplicado bajo cubierta LDPE no afectó el crecimiento de la planta, el número de frutos producidos o peso del fruto, en ninguno de los cultivos. Por lo contrario, las alturas del pimiento, del tomate y de la berenjena se redujeron del 65 al 72%, del 30 al 75% y del 9 al 32%, respectivamente, con EPTC aplicado debajo de HBM en dosis de 2 a 4 kg ia ha−1. Tendencias similares se observaron en el rendimiento del cultivo; el número y el peso de los frutos se redujeron de 71 a 84% para el pimiento, de 36 a 76% para el tomate y de 7 a 15% para la berenjena, cuando el EPTC se aplicó en dosis de 2 a 4 kg ia ha−1 comparado con el testigo sin HBM o EPTC. Ni el largo de las guías de la sandía, ni el número y peso de sus frutos fueron afectados por EPTC aplicado debajo de la cubierta HBM. Aparentemente, la cubierta HBM reduce la pérdida de EPTC por volatilización, incrementando así la dosis presente en el momento de la siembra. El EPTC podría ser incluido como parte de un sistema alternativo al MBr para tomate, pimiento, berenjena y sandía, cuando se aplica debajo de una cubierta LDPE, y también podría ser aplicado en sandía en las dosis recomendadas, utilizando cubierta HBM como la empleada en este experimento.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anbar, A. D., Yung, Y. L., and Chavez, F. P. 1996. Methyl bromide: ocean sources, ocean sinks, and climate sensitivity. Global Biogeochem. Cycles 10:175190.Google Scholar
Anonymous, . 1999. Commercial Watermelon Production Handbook. University of Georgia Extension Bulletin #996. http://www.agmrc.org/media/cms/B996_B3D54FD90A36C.pdf Accessed: June 25, 2010.Google Scholar
Anonymous, . 2006. Commercial Tomato Production Handbook. University of Georgia Extension Bulletin #1312. http://www.caes.uga.edu/Publications/pubDetail.cfm?pk_id=7470&pg=al&ak=C. Accessed: June 25, 2010.Google Scholar
Anonymous, . 2009. Commercial pepper production handbook. University of Georgia Extension Bulletin #1309. http://www.caes.uga.edu/Publications/pubDetail.cfm?pk_id=7461&pg=al&ak=C (verified 25 June 2010).Google Scholar
Austerweil, M., Steiner, B., and Gamliel, A. 2006. Permeation of soil fumigants through agricultural plastic films. Phytopathology 34:491501.Google Scholar
Buker, R. S. III., Stall, W. M., Olson, S. M., and Shilling, D. G. 2003. Season-long interference of yellow nutsedge (Cyperus esculentus) with direct-seeded and transplanted watermelon (Citrullus lanatus). Weed Technol. 17:751754.CrossRefGoogle Scholar
Chase, C. A., Sinclair, T. R., Shilling, D. G., Gilreath, J. P., and Locascio, S. J. 1998. Light effects on rhizome morphogenesis in nutsedges (Cyperus spp.): implications for control by soil solarization. Weed Sci. 46:575580.Google Scholar
Culpepper, A. S., Grey, T. L., and Webster, T. M. 2006. Purple nutsedge (Cyperus rotundus) response to methyl bromide alternatives applied under four types of mulch. Pages 148. in Proceedings of the Southern Weed Science Society Annual Meeting. Southern Weed Science Society. Champaign, IL.Google Scholar
[EPA] U.S. Environmental Protection Agency. 2008. The Phaseout of Methyl Bromide. http://www.epa.gov/Ozone/mbr/. Accessed: June 25, 2010.Google Scholar
[EPA] U.S. Environmental Protection Agency. 2011. List of Critical Uses. http://www.epa.gov/Ozone/mbr/cueuses.html. Accessed: October 4, 2011.Google Scholar
Garibaldi, A., Baudino, M., Minuto, A., and Gullino, M. L. 2008. Effectiveness of fumigants and grafting against tomato brown root rot caused by Colletotrichum coccodes . Phytoparasitica 36:483488.Google Scholar
Gilreath, J. P., Motis, T. N., and Santos, B. M. 2005. Cyperus spp. control with reduced methyl bromide plus chloropicrin doses under virtually impermeable film in pepper. Crop Prot. 24:285287.Google Scholar
Harrison, H. F. and Fery, R. L. 1998. Responses of leading bell pepper varieties to bentazon herbicide. HortScience 33:318320.Google Scholar
Julian, J. W., Sullivan, G. H., and Weller, S. C. 1998. Assessment of potential impacts from the elimination of methyl bromide in the fruit and vegetable trade. HortScience 33:794797.Google Scholar
Kemble, J. M., Sikora, E. J., Simonne, E. H., Zehnder, G. W., and Patterson, M. G. 1998. Guide to commercial eggplant production. Alabama Cooperative Extension System, ANR-1098. http://www.aces.edu/pubs/docs/A/ANR-1098/. Accessed: June 25, 2010.Google Scholar
MacRae, A. W., Vallad, G., and Noling, J. 2010. Evaluation of all components of the 3-way fumigant system for use in central Florida tomato. Pages 17. in Proceedings of Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. Methyl Bromide Alternatives Outreach, Fresno, CA.Google Scholar
Malathrakis, N. E. 1999. Soil fumigation with methyl bromide: advantages and disadvantages. Pages 46. in Third International Workshop on Methyl Bromide Alternatives for the Southern European Countries. Agricultural Ministry of Greece, The European Commission DGXI. Crete, Greece.Google Scholar
Minuto, A. G., Clini, C., and Gullino, M. L. 1999a. Replacement of methyl bromide on vegetable crops in Italy. Pages 46. in Third International Workshop on Methyl Bromide Alternatives. Agricultural Ministry of Greece, The European Commission DGXI. Crete, Greece.Google Scholar
Minuto, A., Gilardi, G., Gullino, M. L., and Garibaldi, A. 1999b. Reduced dosages of methyl bromide applied under gas-impermeable plastic films for controlling soilborne pathogens of vegetable crops. Crop Prot. 18:365371.Google Scholar
Morales-Payan, J. P. and Stall, W. M. 1997. Effect of purple nutsedge (Cyperus rotundus) population densities on the yield of eggplant (Solanum melongena). HortScience 32:431.Google Scholar
Motis, T. N., Locascio, S. J., Gilreath, J. P., and Stall, W. M. 2003. Season-long interference of yellow nutsedge (Cyperus esculentus) with polyethylene-mulched bell pepper (Capsicum annuum). Weed Technol. 17:543549.Google Scholar
Noling, J. W. 2002. Reducing methyl bromide field application rates with plastic mulch technology. University of Florida Bulletin #ENY046. http://edis.ifas.ufl.edu/in403. Accessed: June 25, 2010.Google Scholar
Noling, J. W. and Becker, J. O. 1994. The challenge of research and extension to define and implement alternatives to methyl bromide. J. Nematol. (Suppl.) 26:573586.Google ScholarPubMed
Noling, J. W., Gilreath, J. P., and Botts, D. A. 2006. Alternatives to methyl bromide soil fumigation for Florida vegetable production. Pages 121126. In Olson, S. M. and Maynard, D. N., eds. Vegetable Production Handbook for Florida, 2006–2007. Gainesville, FL IFAS, University of Florida.Google Scholar
Ou, L.-T., Thomas, J. E., Allen, L. H. Jr., Vu, J. C., and Dickson, D. W. 2008. Comparison of surface emissions and subsurface distribution of cis- and trans-1,3-dichloropropene and chloropicrin in sandy field beds covered with four different plastic films. J. Environ. Sci. Health Part B 43:376381.CrossRefGoogle ScholarPubMed
Parker, C., Holly, K., and Hocombe, S. D. 1969. Herbicides for nutgrass control—conclusions from ten years of testing at Oxford. PANS 15:5463.Google Scholar
Patterson, D. T. 1998. Suppression of purple nutsedge (Cyperus rotundus) with polyethylene film mulch. Weed Technol. 12:275280.Google Scholar
Qin, R., Gao, S., McDonald, J. A., Ajwa, H., Shem-Tov, S., and Sullivan, D. A. 2008. Effect of plastic tarps over raised-beds and potassium thiosulfate in furrows on chloropicrin emissions from drip fumigated fields. Chemosphere 72:558563.Google Scholar
Ragsdale, N. N. and Wheeler, W. B. 1995. Methyl bromide risks, benefits, and current status in pest control. Rev. Pestic. Toxicol. 3:2144.Google Scholar
Santos, B. M. 2009. Drip-applied metam potassium and herbicides as methyl bromide alternatives for Cyperus control in tomato. Crop Prot. 28:6871.Google Scholar
Santos, B. M., Gilreath, J. P., Motis, T. N., Noling, J. W., Jones, J. P., and Norton, J. A. 2006a. Comparing methyl bromide alternatives for soilborne disease, nematode and weed management in fresh market tomato. Crop Prot. 25:690695.Google Scholar
Santos, B. M., Gilreath, J. P., Motis, T. N., von Hulten, M., and Siham, M. N. 2006b. Effects of mulch types and concentrations of 1,3-dichloropropene plus chloropicrin on fumigant retention and nutsedge control. HortTechnology 16:637640.Google Scholar
Santos, B. M., Gilreath, J. P., and Siham, M. N. 2007. Comparing fumigant retention of polyethylene mulches for nutsedge control in Florida spodosols. HortTechnology 17:308311.Google Scholar
Senseman, S. A., ed. 2007. Herbicide Handbook. 9th ed. Champaign IL Weed Science Society of America.Google Scholar
[USDA-AMS] U.S. Department of Agriculture-Agricultural Marketing Service. 1953. United States standards for grades of eggplant. http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5050264. Accessed: June 25, 2010.Google Scholar
[USDA-AMS] U.S. Department of Agriculture-Agricultural Marketing Service. 1978. United States standards for grades of watermelon. http://cuke.hort.ncsu.edu/cucurbit/wmelon/wmhndbk/wmusdagrades.pdf. Accessed: June 25, 2010.Google Scholar
[USDA-AMS] U.S. Department of Agriculture-Agricultural Marketing Service. 1991. United States standards for grades of fresh tomatoes. http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5050331. Accessed June 25, 2010.Google Scholar
[USDA-AMS] U.S. Department of Agriculture-Agricultural Marketing Service. 2005. United States standards for grades of sweet peppers. http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5050318. Accessed: June 25, 2010.Google Scholar
Wallace, R. W., Phillips, A. L., and Hodges, J. C. 2007. Processing spinach response to selected herbicides for weed control, crop injury, and yield. Weed Technol. 21:714718.Google Scholar
Webster, T. M. 2005. Patch expansion of purple nutsedge (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) with and without polyethylene mulch. Weed Sci. 53:839845.Google Scholar
Webster, T. M. 2006. Weed survey—southern states: vegetable, fruit, and nut crops subsection. Proc. South. Weed Sci. Soc. 59:260277.Google Scholar
William, R. D. 1976. Purple nutsedge (Cyperus rotundus): tropical scourge. HortScience 11:357364.Google Scholar
William, R. D. and Warren, G. F. 1975. Competition between purple nutsedge and vegetables. Weed Sci. 23:317323.Google Scholar
Wills, G. D. 1987. Description of purple and yellow nutsedge (Cyperus rotundus and Cyperus esculentus). Weed Technol. 1:29.Google Scholar
Yates, S. R., Gan, J., Papiernik, S. K., Dugan, R., and Wang, D. 2002. Reducing fumigant emissions after soil application. Phytopathology 92:13441348.Google Scholar