Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-11T04:43:43.576Z Has data issue: false hasContentIssue false

Weed Control and Crop Safety with Premixed Pyrasulfotole and Bromoxynil in Grain Sorghum

Published online by Cambridge University Press:  20 January 2017

Seshadri S. Reddy
Affiliation:
Agricultural Research Center, Kansas State University, Hays, KS 67601
Phillip W. Stahlman*
Affiliation:
Agricultural Research Center, Kansas State University, Hays, KS 67601
Patrick W. Geier
Affiliation:
Agricultural Research Center, Kansas State University, Hays, KS 67601
Curtis R. Thompson
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Randall S. Currie
Affiliation:
Southwest Research-Extension Center, Kansas State University, Garden City, KS 67846
Alan J. Schlegel
Affiliation:
Southwest Research-Extension Center, Kansas State University, Tribune, KS 67879
Brian L. Olson
Affiliation:
Northwest Research-Extension Center, Kansas State University, Colby, KS 67701
Nathan G. Lally
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
*
Corresponding author's E-mail: stahlman@ksu.edu

Abstract

Field experiments were conducted in grain sorghum at five locations in Kansas in 2009 and 2010, to evaluate the efficacy and crop safety of early- to mid-POST (EMPOST) and late-POST (LPOST) applications of premixed pyrasulfotole and bromoxynil (PYRA&BROM) in tank mix combinations with atrazine or atrazine plus 2,4-D ester or dicamba compared to bromoxynil plus atrazine. PYRA&BROM at 244 or 300 g ai ha−1 plus atrazine at 560 g ai ha−1 applied EMPOST controlled pigweed species (Palmer amaranth, tumble pigweed, and redroot pigweed), kochia, velvetleaf, common sunflower, ivyleaf morningglory, and common lambsquarters 93% or greater. Puncturevine control among three locations ranged from 85 to 99%. Control of most weed species was not improved by increasing PYRA&BROM rate from 244 to 300 g ha−1 or by tank mixing 2,4-D or dicamba with PYRA&BROM plus atrazine. However, ivyleaf morningglory control was improved at the LPOST timing by adding 2,4-D or dicamba at 140 g ae ha−1. In no instance did any PYRA&BROM treatment provide greater weed control than bromoxynil plus atrazine at 281 + 560 g ha−1 when applied EMPOST, but in most instances PYRA&BROM treatments were more effective than bromoxynil plus atrazine when applied LPOST. Generally, PYRA&BROM treatments were more effective when applied EMPOST than LPOST, especially when 2,4-D or dicamba was added. PYRA&BROM plus atrazine treatments caused foliar bleaching in sorghum within 7 ± 3 d after treatment, but recovery was complete within 3 to 4 wk and grain yields were not reduced. Tank mixing dicamba with PYRA&BROM and atrazine occasionally reduced visible crop response compared to PYRA&BROM plus atrazine. Our results indicate that PYRA&BROM plus atrazine with or without 2,4-D or dicamba selectively controls several troublesome broadleaf weeds in grain sorghum. Foliar bleaching of sorghum leaves can occur but the symptoms are transient, and grain yields are not likely to be reduced.

Se realizaron experimentos de campo con sorgo para grano, en cinco localidades en Kansas en 2009 y 2010, para evaluar la eficacia y la seguridad en el cultivo de aplicaciones tempranas a intermedias POST (EMPOST) y tardías POST (LPOST) de pre-mezclas de pyrasulfotole y bromoxynil (PYRA&BROM) en combinaciones en mezclas en tanque con atrazine o atrazine más 2,4-D ester o dicamba comparadas a bromoxynil más atrazine. PYRA&BROM a 244 ó 300 g ai ha−1 más atrazine a 560 g ai ha−1 aplicado EMPOST controló especies de amaranto (Amaranthus palmeri, Amaranthus albus, y Amaranthus retroflexus), Kochia scoparia, Abutilon theophrasti, Helianthus annuus, Ipomoea hederacea y Chenopodium album 93% o más. El control de Tribulus terrestris en tres localidades varió entre 85 y 99%. El control de la mayoría de las especies de malezas no mejoró al incrementar la dosis PYRA&BROM de 244 a 300 g ai ha−1 o al mezclar en tanque 2,4-D o dicamba con PYRA&BROM más atrazine. Sin embargo, el control de I. hederacea fue mejorado en LPOST al agregar 2,4-D o dicamba a 140 g ai ha−1. En ninguna instancia, ninguno de los tratamientos PYRA&BROM brindaron un control de malezas mayor al brindado por bromoxynil más atrazine 281 + 560 g ha−1 cuando se aplicó EMPOST, pero en la mayoría de las instancias los tratamientos PYRA&BROM fueron más efectivos que bromoxynil más atrazine aplicados LPOST. Generalmente, los tratamientos PYRA&BROM fueron más efectivos cuando se aplicaron EMPOST que LPOST, especialmente cuando se agregó 2,4-D o dicamba. Los tratamientos PYRA&BROM más atrazine causaron blanqueamiento foliar en el sorgo a 7 ± 3 días después del tratamiento, pero este se recuperó completamente en 2 a 4 semanas y los rendimientos de grano no se redujeron. El mezclar en tanque dicamba con PYRA&BROM y atrazine ocasionalmente redujo la respuesta visible del cultivo en comparación con PYRA&BROM más atrazine. Nuestros resultados indican que PYRA&BROM más atrazine con o sin 2,4-D o dicamba controla selectivamente malezas de hoja ancha problemáticas en el sorgo para grano. El blanqueamiento foliar de hojas de sorgo puede ocurrir, pero los síntomas son transitorios, y las reducciones en rendimientos de grano son poco probables.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abendroth, J. A., Martin, A. R., and Roeth, F. W. 2006. Plant response to combinations of mesotrione and photosystem II inhibitors. Weed Technol. 20:267274.Google Scholar
Andreas, V. A. 2009. New HPPD-inhibitors—A proven mode of action as a new hope to solve current weed problems. Outlooks Pest Manag. 20:2730.Google Scholar
Anonymous. 2010a. Sorghum: World Sorghum Production and Trade. U.S. Grains Council. http://www.grains.org/index.php?option=com_content&view=article&id=74&Itemid=120. Accessed July 30, 2012.Google Scholar
Anonymous. 2010b. Evaluation of Huskie for Weed Control in Grain Sorghum. http://panhandle.unl.edu/c/document_library/get_file?uuid=7e11346c-a54a-42c5-ae3e-6d6565dd4743&groupId=131817. Accessed August 11, 2012.Google Scholar
Anonymous. 2011. Huskie herbicide product label. EPA reg. no. 264-1023. Research Triangle Park, NC Bayer Crop Science. 25 p.Google Scholar
Bollman, S. L., Kells, J. J., and Penner, D. 2006. Weed response to mesotrione and atrazine applied alone and in combination preemergence. Weed Technol. 20:903907.Google Scholar
Brown, D. W., Al-Khatib, K., Regehr, D. L., Stahlman, P. W., and Loughin, T. M. 2004. Safening grain sorghum injury from metsulfuron with growth regulator herbicides. Weed Sci. 52:319325.Google Scholar
Fromme, D. D., Dotray, P. A., Grichar, W. J., and Fernandez, C. J. 2012. Weed control and grain sorghum (Sorghum bicolor) tolerance to pyrasulfotole plus bromoxynil. Int. J. Agron. DOI: Google Scholar
Heap, I. 2012. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed August 1, 2012.Google Scholar
Hugie, J. A., Bollero, G. A., Tranel, P. J., and Riechers, D. E. 2008. Defining the rate requirements for synergism between mesotrione and atrazine in redroot pigweed (Amaranthus retroflexus). Weed Sci. 56:265270.Google Scholar
Moore, J. W. and Murray, D. S. 2000. Influence of Palmer amaranth on grain sorghum yields. Proc. South. Weed Sci. Soc. 53:143144.Google Scholar
Paulsgrove, M. D., Maruska, D. W., Thorsness, K. B., Smith, M. C., Simkins, G. S., and Wrucke, M. 2006. AE, 0317309—a new selective herbicide for dicot weed control in wheat. Proc. North Cent. Weed Sci. Soc. 61:107 [Abstract].Google Scholar
Reddy, S. S., Stahlman, P. W., Geier, P. W., and Peterson, D. E. 2012. Broadleaf weed control and crop safety with premixed pyrasulfotole and bromoxynil in winter wheat. Am. J. Plant Sci. 3(11):16131618. DOI: Google Scholar
Regehr, D. 1998. Weed control. Pages 1011 in Grain Sorghum Production Handbook. Circular 687. (Revised).Manhattan, KS Kansas State University Agricultural Experiment Station and Cooperative Extension Service. http://www.ksre.ksu.edu/library/crpsl2/c687.pdf. Accessed December 3, 2012.Google Scholar
Schulz, A., Oswald, O., Beyer, P., and Kleinig, H. 1993. SC-0051, a 2-benzoyl-cyclohexane-1, 3-dione bleaching herbicide, is a potent inhibitor of the enzyme p-hydroxyphenylpyruvate dioxygenase. FEBS Lett. 318:162166.Google Scholar
Stahlman, P. W. and Wicks, G. A., 2000. Weeds and their control in sorghum. Pages 535590 in Smith, C. W. and Fredricksen, R. A., eds. Sorghum: Origin, History, Technology, and Production. New York John Wiley & Sons.Google Scholar
Thompson, C. R., Peterson, D. E., Fick, W. H., Stahlman, P. W., and Wolf, R. E. 2013. Chemical Weed Control for Field Crops, Pastures, Rangeland, and Noncropland. Report of Progress 1081. Manhattan, KS Kansas State University. 128 p.Google Scholar
Thorsness, K. B., Maruska, D. W., Paulsgrove, M. D., Smith, M. C., Simkins, G. S., Kleven, T. W., and Wrucke, M. 2007. Introduction to Huskie—a new broadleaf herbicide for use in Northern Plains cereals. Proc. North Cent. Weed Sci. Soc., 62:90 [Abstract].Google Scholar
Trebst, A., Depka, B., Jager, J., and Oettmeier, W. 2004. Reversal of the inhibition of photosynthesis by herbicides affecting hydroxyphenylpyruvate dioxygenase by plastoquinone and tocopheryl derivatives in Chlamydomonas reinhardii. Pest Manag. Sci. 60: 669674.Google Scholar
USDA–NASS (U.S. Department of Agriculture–National Agricultural Statistics Service). 2011. Quick Stats Database. USDA–NASS, Washington, DC. http://www.nass.usda.gov. Accessed August 08, 2012.Google Scholar
Woodyard, A., Bollero, G. A., and Riechers, D. E. 2009. Broadleaf weed management in corn utilizing synergistic postemergence herbicides combinations. Weed Technol. 23:513518.Google Scholar