Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T22:48:40.108Z Has data issue: false hasContentIssue false

Winter Wheat and Weed Response to Postemergence Saflufenacil Alone and in Mixtures

Published online by Cambridge University Press:  20 January 2017

John C. Frihauf*
Affiliation:
Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506
Phillip W. Stahlman
Affiliation:
Agricultural Research Center, Kansas State University, Hays, KS 67601
Patrick W. Geier
Affiliation:
Agricultural Research Center, Kansas State University, Hays, KS 67601
*
Corresponding author's E-mail: john.frihauf@basf.com.

Abstract

Growth chamber experiments were conducted in the fall of 2006 and spring of 2007 to determine winter wheat, flixweed, and henbit response to POST treatments of saflufenacil at 13, 25, and 50 g ai ha−1 applied alone and in combinations with bentazon at 560 g ai ha−1 or 2,4-D amine at 533 g ae ha−1 and nonionic surfactant (NIS) at 0.25% v/v. Mixtures of saflufenacil and 2,4-D amine were also applied without NIS. Necrosis was observed on wheat leaves within 1 d after treatment (DAT) and peaked at 5 to 7 DAT. Saflufenacil at 13, 25, or 50 g ai ha−1 applied alone or in combination with 533 g ae ha−1 of 2,4-D amine plus NIS caused 19 to 38% (alone) and 24 to 40% (in combination) wheat foliar necrosis, respectively. Foliar necrosis of wheat was 14% or less when saflufenacil, at any rate, was mixed with bentazon or 2,4-D amine without NIS. Combinations of saflufenacil at any of the rates tested plus bentazon and NIS did not reduce wheat dry weight. Saflufenacil plus 2,4-D amine without adjuvant resulted in similar wheat dry weights as 2,4-D amine. Saflufenacil plus 2,4-D amine without NIS provided 99% control of flixweed at 21 DAT, but henbit control ranged from 81 to 88%. In comparison, saflufenacil at 50 g ha−1 mixed with bentazon and NIS controlled flixweed at 92% and henbit at 63% at 21 DAT. This research indicates saflufenacil has potential for POST use in winter wheat to control winter annual broadleaf weeds when tank-mixed with 2,4-D amine without NIS, but additional research is needed to discover ways to improve crop safety without reducing weed control.

En el otoño de 2006 y la primavera de 2007, se realizaron experimentos en cámaras de crecimiento para determinar la respuesta de trigo de invierno (Triticum aestivum) y la maleza Descurainia sophia y Lamium amplexicaule a tratamientos postemergentes de saflufenacil a 13, 25 y 50 g ia ha−1 aplicado solo o en combinación con bentazon a 560 g ia ha−1 o 2,4-D amina a 533 g ea ha−1 y surfactante no iónico (NIS) a 0.25% v/v. Mezclas de saflufenacil y 2,4-D amina también se aplicaron sin NIS. A un día después del tratamiento (DAT), se observó necrosis en las hojas del trigo y ésta llegó a su mayor intensidad entre 5 y 7 DAT. El Saflufenacil a 13, 25 o 50 g ia ha−1 aplicado solo o en combinación con 533 g ea ha−1 de 2, 4-D amina más NIS, causó en el trigo necrosis foliar de 19 a 38% y de 24 a 40%, respectivamente. La necrosis foliar fue de 14% o menos cuando el saflufenacil a cualquier dosis se mezcló con bentazon ó 2,4-D amina sin NIS. Combinaciones de saflufenacil en cualquiera de las dosis probadas más bentazon y el NIS no redujeron el peso seco del trigo. El saflufenacil más el 2,4-D amina sin adyuvante y el 2,4-D amina solo, obtuvieron resultados similares en el peso seco del trigo. A 21 DAT, el saflufenacil más 2,4-D amina sin NIS logró un 99% de control en Descurainia sophia, mientras que en Lamium amplexicaule el control fluctuó entre 81 y 88%. En comparación, el tratamiento de saflufenacil en dosis de 50 g ia/ha mezclado con bentazon y NIS, resultó en Descurainia sophia y en Lamium amplexicaule con un control de 92 y 63%, respectivamente. Esta investigación indica que el saflufenacil tiene potencial para su uso en postemergencia en el cultivo de trigo de invierno para el control de maleza anual de hoja ancha de invierno, cuando se mezcla con 2,4-D amina sin NIS. Sin embargo, se requiere mayor investigación para encontrar métodos que mejoren la seguridad del cultivo sin reducir el control de la maleza.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, , 2009. Kixor™ herbicide technical brochure. Research Triangle Park, NC: BASF. 16.Google Scholar
Becerril, J. M. and Duke, S. O. 1989. Protoporphyrin IX content correlates with activity of photobleaching herbicides. Plant Physiol 90:11751181.CrossRefGoogle ScholarPubMed
Durgan, B. R., Yenish, J. P., Daml, R. J., and Miller, D. W. 1997. Broadleaf weed control in hard red spring wheat (Triticum aestivum) with F8426. Weed Technol 11:489495.CrossRefGoogle Scholar
Haworth, P. and Hess, F. D. 1988. The generation of singlet oxygen (1O2) by the nitrodiphenyl ether herbicide oxyfluorfen is independent of photosynthesis. Plant Physiol 86:672676.CrossRefGoogle Scholar
Heap, I. 2009. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org Accessed: May 31, 2009.Google Scholar
Howatt, K. A. 2005. Carfentrazone-ethyl injury to spring wheat (Triticum aestivum) is minimized by some ALS-inhibiting herbicides. Weed Technol 19:777783.CrossRefGoogle Scholar
Jacobs, J. M. and Jacobs, N. J. 1993. Porphyrin accumulation and export by isolated barley (Hordeum vulgare) plastids. Plant Physiol 101:11811187.CrossRefGoogle ScholarPubMed
Jacobs, J. M., Jacobs, N. J., Sherman, T. D., and Duke, S. O. 1991. Effect of diphenyl herbicides on oxidation of protoporphrinogen to protoporphyrin in organellar and plasma membrane enriched fractions of barley. Plant Physiol 97:197203.CrossRefGoogle ScholarPubMed
Jenks, B. M., Ball, D. A., Stahlman, P. W., and Frihauf, J. C. 2008. Preplant weed control and wheat tolerance to BAS 800H. Proc. West. Soc. Weed Sci 61:56. [Abstract].Google Scholar
Knezevic, S. Z., Scott, J., Datta, A., and Charvat, L. D. 2008. Winter Wheat Tolerance to PRE and POST Applications of Saflufenacil. Champaign, IL: North Central Weed Science Society. [CD-ROM Computer File, Abstract 7].Google Scholar
Lee, C., Roeth, F., and Martin, A. 2000. Herbicide Resistant Weeds. Lincoln, NE: University of Nebraska–Lincoln Extension Rep. G1399.Google Scholar
Lee, H. J., Duke, M. V., and Duke, S. O. 1993. Cellular localization of protoporphyrinogen-oxidizing activities of etiolated barley (Hordeum vulgare L.) leaves. Plant Physiol 102:881889.CrossRefGoogle ScholarPubMed
Mallory-Smith, C., Hyslop, G. R., Thill, D., and Morishita, D. 1993. Herbicide-resistant weeds and their management. Moscow, ID: Pacific Northwest Extension—University of Idaho Extension, Oregon State University Extension Service, and Washington State University Extension Rep. PNW 437. 5.Google Scholar
Matringe, M., Camadro, J. M., Block, M. A., Joyard, J., Scalla, R., Labbe, P., and Douce, R. 1992. Localization within chloroplasts of protoporphyrinogen oxidase, the target enzyme for diphenylether-like herbicides. J. Biol. Chem 267:46464651.CrossRefGoogle ScholarPubMed
Regehr, D. L. and Morishita, D. W. 1989. Questions and Answers on Managing Herbicide-Resistant Weeds. Manhattan, KS: Kansas State University Extension Rep. MF-926. 8.Google Scholar
Sikkema, P. H., Shropshire, C., and Soltani, N. 2008. Tolerance of Spring Cereals to BAS 800H Applied Preemergence and Postemergence. Lawrence, KS: Weed Science Society of America. [CD-ROM Computer File, Abstract 13].Google Scholar
Stahlman, P. W., Olson, B. S., and Peterson, D. E. 2009. Top-Dress Applications of UAN Fertilizer with Herbicides in Wheat. Manhattan, KS: Kansas State University Extension Rep. MF-2903. 4.Google Scholar
Witkowski, D. A. and Halling, B. P. 1989. Inhibition of plant protoporphyrinogen oxidase by the herbicide acifluorfen-methyl. Plant Physiol 90:12391242.CrossRefGoogle ScholarPubMed