Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T05:48:32.384Z Has data issue: false hasContentIssue false

Adventitious Presence: Volunteer Flax (Linum usitatissimum) in Herbicide-Resistant Canola (Brassica napus)

Published online by Cambridge University Press:  20 January 2017

Amit J. Jhala*
Affiliation:
Department of Plant Sciences, University of California, Davis, CA 95616
Lisa L. Raatz
Affiliation:
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
Jody E. Dexter
Affiliation:
Genome Prairie, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
Linda M. Hall*
Affiliation:
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
*
Corresponding author's E-mail: ajjhala@ucdavis.edu
Corresponding author's E-mail: ajjhala@ucdavis.edu

Abstract

Flax is in the process of development as a crop for bio-industrial and nutraceutical products predicated on the use of genetic modification. Before genetically modified (GM) flax is commercially released, effective management practices should be developed to minimize adventitious presence (AP) of GM volunteer flax in subsequent crops. Field research was conducted at four locations during 2007 and 2008 in central Alberta to quantify and mitigate AP of volunteer flax in glufosinate-resistant (GR) and imidazolinone-resistant (IR) canola. A single preplant application of glyphosate at 1,250 g ae ha−1 in GR canola reduced volunteer flax density from 54 to 3 plants m−2 and seed production from 5,963 to 233 seeds m−2. Similarly, the recommended rate of POST glufosinate (600 g ai ha−1) alone effectively controlled volunteer flax and reduced flax seed viability to < 8% and AP to 0.2%. A combination of preplant (glyphosate) and POST (glufosinate) at recommended rates reduced volunteer flax seed production, yield, and AP to near zero in GR canola. Glyphosate applied preplant was equally effective in IR canola, reducing volunteer flax density from 56 to 2 plants m−2, and seed production from 5,571 to 472 seeds m−2. Imazamox + imazethapyr applied POST at all the rates poorly controlled volunteer flax and, even in combination with preplant glyphosate, cannot be recommended for control of flax volunteers in IR canola.

El Linum usitatissimum (linaza) está en proceso de desarrollo para ser considerado como cultivo bio-industrial y nutricional con base a modificaciones genéticas para su uso. Antes de que el genéticamente modificado (GM) Linum usitatissimum sea liberado comercialmente, se deberían desarrollar prácticas de manejo efectivas que minimicen la presencia adventicia (AP) que pueda afectar posteriormente a otros cultivos. Durante 2007 y 2008, en cuatro localidades de la región central de Alberta se realizó una investigación de campo para cuantificar y mitigar la presencia adventicia (AP) del Linum usitatissimum en cultivos de canola resistente a glufosinato (GR) y a imidazolinonas (IR). Una sola aplicación de glifosato antes de sembrar (PRE-SIEMBRA) en dosis de 1,250 g ae/ha en canola GR, redujo la densidad de Linum usitatissimum de 54 a 3 plantas/m2 y la producción de semilla de 5,963 a 233 semillas/m2. De manera similar, la dosis recomendada de glufosinato (600 g ia/ha) aplicado POST, controló efectivamente a Linum usitatissimum y redujo la viabilidad de la semilla de linaza a < 8% y AP a 0.2%. Una combinación de glifosato (PRE-SIEMBRA) y glufosinato (POST), en las dosis recomendadas, redujo en Linum usitatissimum la producción de semilla, su rendimiento y la AP a casi cero, en cultivos de canola GR. El glifosato aplicado en PRE-SIEMBRA, fue igualmente efectivo en canola IR, y redujo la densidad de Linum usitatissimum de 56 a 2 plantas/m2 y la producción de semilla de 5,571 a 472 semillas/m2. El imazamox más el imazethapyr aplicados POST en todas las dosis, y aún combinados con glifosato en PRE-SIEMBRA, presentaron un pobre control de Linum usitatissimum, por lo que no pueden ser recomendados para controlar a esta planta, en cultivos de canola resistente a imidazolinonas.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

[AAFC] Agriculture and Agri-Food Canada 2009. Canada: Grains and Oilseeds Outlook. http://www.agr.gc.ca/pol/mad-dam/pubs/go-co/pdf/go-co_2009-01-26_e.pdf. Accessed: February 22, 2009.Google Scholar
Beckie, H. 2001. Impact of herbicide resistant crops as weeds in Canada. Pages 135142. in. Proceedings of the Brighton Crop Protection Conference—Weeds. Brighton, UK: British Crop Protection Council, UK.Google Scholar
Beckie, H. J. and Owen, M. D. K. 2007. Herbicide-resistant crops as weeds in North America. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 044:122.Google Scholar
Blackshaw, R. E., Harker, K. N., O'Donovan, J. T., Beckie, H. J., and Smith, E. G. 2008. Ongoing development of integrated weed management systems on the Canadian Prairies. Weed Sci 56:146150.CrossRefGoogle Scholar
Blackshaw, R. E., Molnar, L. J., and Larney, F. J. 2005. Fertilizer, manure and compost effects on weed growth and competition with winter wheat in western Canada. Crop Prot 24:971980.Google Scholar
Bloedon, L. T. and Szapary, P. O. 2004. Flaxseed and cardiovascular risk. Nutr. Rev 62:1827.Google Scholar
Brook, H. ed. 2008. Crop Protection. 2008. Edmonton, AB, Canada: Alberta Agriculture and Food in co-operation with the agro-chemical industry. 452464.Google Scholar
Brookes, G. and Barfoot, P. 2008. Global impact of biotech crops: socio-economic and environmental effects, 1996–2006. AgBioForum 11:2138.Google Scholar
Buth, J. A. 2007. Herbicide resistance canola—the first ten years. Pages 3341. in Gulden, R. H. and Swanton, C. J. eds. The First Decade of Herbicide Resistance Crops in Canada. Topics in Canadian Weed Science, Volume 4. Sainte Anne de Bellevue, QB: Canadian Weed Science Society.Google Scholar
Deen, W., Allan, H., Shropshire, C., Soltani, N., and Sikkema, P. H. 2006. Control of volunteer glyphosate-resistant corn (Zea mays) in glyphosate-resistant soybean (Glycine max). Weed Technol 20:261266.CrossRefGoogle Scholar
Demeke, T., Perry, D. J., and Scowcroft, W. R. 2006. Adventitious presence of GMOs: scientific overview for Canadian grains. Can. J. Plant Sci 86:123.Google Scholar
Devos, Y., Demont, M., and Sanvido, O. 2009. Coexistence of genetically modified (GM) and non-GM crops in the European Union. A review. Agron. Sustain. Dev 29:1130.Google Scholar
Devos, Y., Reheul, D., and De Schrijver, A. 2005. The co-existence between transgenic and non-transgenic maize in the European Union: a focus on pollen flow and cross fertilization. Environ. Biosaf. Res 4:7187.Google Scholar
Devos, Y., Reheul, D., de Schrijver, A., Cors, F., and Moens, W. 2004. Management of herbicide-tolerant oilseed rape in Europe: a case study on minimizing vertical gene flow. Environ. Biosaf. Res 3:135148.CrossRefGoogle ScholarPubMed
Dexter, J., Topinka, K., and Hall, L. M. 2006. Emergence periodicity of volunteer flax (Linum usitatissimum L.) in conventional and direct seeding. Pages 1723. in. Proceedings of the 61st Flax Institute of the United States. Fargo, ND: Flax Institute of the USA.Google Scholar
Dexter, J. E., Jhala, A. J., Hills, M. J., Yang, R. C., Weselake, R. J., Topinka, K., and Hall, L. M. 2010. Quantification and mitigation of volunteer flax (Linum usitatissimum L.) in wheat (Triticum aestivum L.). Weed Sci 58:8088.Google Scholar
Ellstrand, N. C. 2003. Going to “great lengths” to prevent the escape of genes that produce specialty chemicals. Plant Physiol 132:17701774.Google Scholar
Ellstrand, N. C., Prentice, H. C., and Hancock, J. F. 1999. Gene flow and introgression from domesticated plants into their wild relatives. Annu. Rev. Ecol. Syst 30:539563.Google Scholar
Fitzpatrick, K. 2007. Innovation in western Canadian functional food. Cereal Foods World 52:289290.Google Scholar
Flax Council of Canada 2007. Canada—A Flax Leader. http://www.flaxcouncil.ca/english/index.jsp?p=what2&mp=what. Accessed: April 4, 2007.Google Scholar
Friesen, G. H. and Wall, D. A. 1991. Residual effects of CGA-131036 and chlorsulfuron on spring sown rotational crops. Weed Sci 39:280283.CrossRefGoogle Scholar
Gressel, J. 2005. Introduction—the challenges of ferality. Pages 17. in Gressel, J. ed. Crop Ferality and Volunteerism. Boca Raton, FL: Taylor & Francis.CrossRefGoogle Scholar
Gruber, S., Colbach, N., Barbottin, A., and Pekrun, C. 2008. Post-harvest gene escape and approaches for minimizing it. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Res 3:117.Google Scholar
Hall, L., Topinka, K., Huffman, J., Davis, L., and Good, A. 2000. Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Sci 48:688694.Google Scholar
Harker, K. N., O'Donovan, J. T., Clayton, G. W., and Mayko, J. 2008. Field-scale time of weed removal in canola. Weed Technol 22:747749.Google Scholar
Holst-Jensen, A. 2008. GMO testing-trade, labeling or safety first? Nat. Biotechnol 26:858859.Google Scholar
James, C. 2008. Global Status of Commercialized Biotech/GM Crops: 2008. Ithaka, NY: International Service for the Acquisition of Agri-Biotech Applications (ISAAA) Brief 39. 120.Google Scholar
Jhala, A. J., Hall, L. M., and Hall, J. C. 2008. Potential hybridization of flax (Linum usitatissimum L.) with weedy and wild relatives: an avenue for movement of engineered genes? Crop Sci 48:825840.Google Scholar
Jhala, A. J., Weselake, R. J., and Hall, L. M. 2009. Genetically engineered flax (Linum usitatissimum L.): potential benefits, risks, regulations and mitigation of transgene movement. Crop Sci 49:19431954.CrossRefGoogle Scholar
Krueger, R. and Le Buanec, B. 2008. Action needed to harmonize regulation of low-level presence of biotech traits. Nat. Biotechnol 26:161162.CrossRefGoogle ScholarPubMed
Kymalainen, H. R. and Sjoberg, A. M. 2008. Flax and hemp fibers as raw materials for thermal insulations. Building Environ 43:12611269.Google Scholar
Leeson, J. Y., Thomas, A. G., Hall, L. M., Brenzil, C. A., Andrews, T., Brown, K. R., and Van Acker, R. C. 2005. Prairie Weed Surveys of Cereal, Oilseed and Pulse Crops from the 1970s to the 2000s. Saskatoon, Canada: Agriculture and Agri-Food Canada, Saskatoon Research Centre Weed Survey Series Publication. 395.Google Scholar
Little, T. M. and Hills, F. J. 1978. Agricultural Experimentation: Design and Analysis. New York: John Wiley and Sons.Google Scholar
McHughen, A. and Holm, F. A. 1995. Transgenic flax with environmentally and agronomically sustainable attributes. Transgenic Res 4:311.Google Scholar
McHughen, A., Rowland, G. G., Holm, F. A., Bhatty, R. S., and Kenaschuk, E. O. 1997. CDC Triffid transgenic flax. Can. J. Plant Sci 77:641643.Google Scholar
McPherson, M. A., Yang, R. C., Good, A. G., Nielson, R. L., and Hall, L. M. 2009. Potential for seed-mediated gene flow in agroecosystems from transgenic safflower (Carthamus tinctorius L.) intended for plant molecular farming. Transgenic Res 18:281299.Google Scholar
Moryganov, A. P., Galashina, V. N., Dymnikova, N. S., Stokozenko, V. G., and Danolov, A. R. 2008. Modification of flax fibers. Fiber Chem 40:234240.Google Scholar
O'Donovan, J. T., Blackshaw, R. E., Harker, K. N., Clayton, G. W., and Maurice, D. C. 2005. Field evaluation of regression equations to estimate crop yield losses due to weeds. Can. J. Plant Sci 85:955962.Google Scholar
O'Donovan, J. T., Harker, K. N., Clayton, G. W., Hall, L. M., Cathcart, J., Sapsford, K. L., Holm, F. A., and Hacault, K. 2007. Volunteer barley interference in spring wheat grown in a zero-tillage system. Weed Sci 55:7074.Google Scholar
Ramessar, K., Capell, T., Twyman, R. M., Quemada, H., and Christou, P. 2008. Trace and traceability—a call for regulatory harmony. Nat. Biotechnol 9:975978.Google Scholar
SAS 2007. SAS/STAT User's Guide. Cary, NC: SAS Institute.Google Scholar
Sorensen, B., Furukawa-Stoffer, T., Marshall, K. S., Page, E. K., Mir, Z., Foster, R. J., and Weselake, R. J. 2005. Storage lipid accumulation and acyltransferase action in developing flaxseed. Lipids 10:10431049.Google Scholar
Statistics Canada 2009. Field and Specialty Crops. http://www40.statcan.gc.ca/l01/cst01/prim11a-eng.htm. Accessed: February 22, 2009.Google Scholar
Thomas, A. G., Leeson, J. Y., and Van Acker, R. C. 1997. Farm Management Practices in Manitoba, 1997 Manitoba Weed Survey Questionnare Results. Weed Survey Series Publ. 3rd ed. Saskatoon, Saskatchewan: Agriculture and Agri-Food Canada.Google Scholar
Thompson, L. U., Chen, J. M., Li, T., Straaser, W. K., and Goss, P. E. 2005. Dietary flaxseed alters tumor biological markers in post menopausal breast cancer. Clin. Cancer Res 11:38283835.CrossRefGoogle Scholar
[USDA/APHIS] U.S. Department of Agriculture Animal and Plant Health Inspection Service 2008. Biotechnology: Noncompliance History. http://www.aphis.usda.gov/biotechnology/compliance_history.shtml Accessed: September 3, 2008.Google Scholar
Wall, D. A. and Kenaschuk, E. O. 1996. Flax tolerance to thifensulfuron and tribenuron. Can. J. Plant Sci 76:899905.CrossRefGoogle Scholar
Wall, D. A. and Smith, M. A. H. 1999. Control of volunteer flax in wheat. Can. J. Plant Sci 79:463468.Google Scholar
Weber, W. E., Bringezu, T., Broer, I., Eder, J., and Holz, F. 2007. Coexistence between GM and non-GM maize crops—tested in 2004 at the field scale level. J. Agron. Crop Sci 193:7992.Google Scholar
Williams, M. M. and Boydston, R. A. 2006. Volunteer potato interference in carrot. Weed Sci 54:9499.Google Scholar
Wrobel-Kwiatkowska, M., Zebrowski, J., Starzycki, M., Oszmianski, J., and Szopa, J. 2007. Engineering of PHB synthesis causes improved elastic properties of flax fibers. Biotechnol. Prog 23:269277.Google Scholar
York, A. C., Beam, J. B., and Culpepper, A. S. 2005. Control of volunteer glyphosate resistant soybean in cotton. J. Cotton Sci 9:102109.Google Scholar