Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T19:51:13.875Z Has data issue: false hasContentIssue false

Air-Propelled Abrasive Grit for Postemergence In-Row Weed Control in Field Corn

Published online by Cambridge University Press:  20 January 2017

Frank Forcella*
Affiliation:
North Central Soil Conservation Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, 803 Iowa Avenue, Morris, MN 56267
*
Corresponding author's E-mail: frank.forcella@ars.usda.gov

Abstract

Organic growers need additional tools for weed control. A new technique using abrasive grit propelled by compressed air was tested in field plots. Grit derived from corncobs was directed at seedlings of summer annual weeds growing at the bases of corn plants when the corn was at differing early stages of leaf development. Season-long, in-row weed control exceeded 90% when two or three abrasion events were coupled with between-row cultivation. Timing of weed abrasion was critical, with highest levels of control corresponding to the one- and five-leaf stages or the one-, three-, and five-leaf stages of corn development. Corn yields associated with these treatments were equivalent to those of hand-weeded controls in which no abrasive grit was applied. Thus, air-propelled abrasive grit applications at the one-, three-, and five-leaf stages of corn controlled weeds sufficiently to prevent weed-induced reductions in corn grain. Additionally, these applications were not harmful to corn plants. This new concept for weed control may be of interest to organic crop managers.

Los agricultores de productos orgánicos necesitan de herramientas adicionales para el control de la maleza. Una nueva técnica que usa un polvo abrasivo propulsado por aire comprimido fue probada en parcelas en el campo. Un polvo derivado de mazorcas de maíz fue dirigido a plántulas de maleza anual de verano que crecían al pie de las plantas de maíz, cuando este cultivo se encontraba en diferentes etapas tempranas del desarrollo de las hojas. A lo largo de la estación, dentro de hileras, el control de maleza excedió 90% cuando dos o tres aplicaciones de la abrasión se asociaron con paso de cultivadora entre hileras. El tiempo de abrasión para la maleza fue crítico, con los más altos niveles de control correspondiente a las etapas de 1 y 5 hojas o en las etapas de desarrollo del cultivo de 1, 3 y 5 hojas. Los rendimientos de maíz asociados con estos tratamientos fueron equivalentes a aquellos con controles de deshierbe manual, en los cuales no se aplicaron los polvos abrasivos. Por lo tanto, las aplicaciones de los polvos propulsados con aire comprimido en las etapas de 1, 3 y 5 hojas de maíz, controlaron la maleza lo suficiente para prevenir reducciones en el rendimiento del grano causadas por éstas. Adicionalmente, estas aplicaciones no fueron perjudiciales a las plantas de maíz. Este nuevo concepto para el control de maleza podría ser de interés para los productores de cultivos orgánicos.

Type
Notes
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, . 2008. Statistix 9.0. Users Manual. http://www.statistix.com. Accessed: March 31, 2011.Google Scholar
Draper, M. 2004. Common Corn Smut. Plant Disease Management in South Dakota. Brookings, SD South Dakota State University Cooperative Extension Service FS-918. 2 p.Google Scholar
Forcella, F. 2009a. Potential use of abrasive air-propelled agricultural residues for weed control. Weed Res. 49:341345.Google Scholar
Forcella, F. 2009b. Potential of air-propelled abrasives for selective weed control. Weed Technol. 23:317320.Google Scholar
Forcella, F., James, T., and Rahman, A. 2011. Post-emergence weed control through abrasion with an approved organic fertilizer. Renewable Agric. Food Systems 26:3137.Google Scholar
Gunsolus, J. L. 1990. Mechanical and cultural weed control in corn and soybean. Am. J. Altern. Agric. 5:114119.Google Scholar
Lauer, J. G., Carter, P. R., Wood, T. M., Diezel, G., Wiersma, D. W., Pand, R. E., and Mlynarek, M. J. 1999. Corn hybrid response to planting date in the northern Corn Belt. Agron. J. 91:834839.Google Scholar
Lütkemeyer, L. 2000. Hydropneumatische unkrautbekampfung in reihenkulturen. Z. Pflanzenkr. Pflanzenschutz Sonderh. 17:661666.Google Scholar
Moncada, K. M. and Sheaffer, C. C., eds. 2010. Organic Risk Management. www.organicriskmanagement.umn.edu. Accessed: April 1, 2011.Google Scholar
Moynihan, M. 2010. Status of Organic Agriculture in Minnesota: A Report to the Minnesota Legislature. http://www.mda.state.mn.us/∼/media/Files/news/govrelations/organicstatusreport.ashx. Accessed: April 1, 2011.Google Scholar
Shinners, K. J., Binversie, B. N., and Savoie, P. 2003. Whole plant corn harvesting for biomass: comparison of single-pass and multiple-pass harvest systems. http://asae.frymulti.com/azdez.asp?JID=5&AID=15404&CID=lnv2003&v=&i=&T=1&refer=7&access=. Accessed: April 6, 2011.Google Scholar
Van Der Weide, R. Y., Bleeker, P. O., Achten, V.T.J.M., Lotz, L.A.P., Fogelberg, F., and Melander, B. 2008. Innovation in mechanical weed control in crop rows. Weed Res. 48:215224.Google Scholar
Walz, E. 2004. Fourth National Organic Farmers' Survey. http://ofrf.org/publications/pubs/4thsurvey_results.pdf. Accessed 1 April 2011.Google Scholar