Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T02:26:24.076Z Has data issue: false hasContentIssue false

Camelina (Camelina sativa) Tolerance to Selected Preemergence Herbicides

Published online by Cambridge University Press:  20 January 2017

Prashant Jha*
Affiliation:
Montana State University, Southern Agricultural Research Center, Huntley, MT 59037
Robert N. Stougaard
Affiliation:
Montana State University, Northwestern Agricultural Research Center, Kalispell, MT 59901
*
Corresponding author's E-mail: pjha@montana.edu.

Abstract

Camelina is an emerging oilseed crop suitable for biofuel production in dryland cropping systems of the northwestern United States. Currently, camelina growers have limited herbicide options available for weed control. Tolerance of camelina to PRE applications of quinclorac, S-metolachlor, dimethenamid-P, pendimethalin, and pyroxasulfone was evaluated at two locations (Kalispell in 2009 and 2010, and Huntley in 2010 and 2011) in Montana. Susceptibility to each herbicide was determined at three different rates. Quinclorac applied PRE at 280 to 840 g ai ha−1 did not significantly injure camelina, and had no negative effect on plant density, biomass, flowering, and yield at either location. S-Metolachlor at 1,060 to 2,140 g ai ha−1 caused less than 20% injury to camelina, with no reductions in plant density, biomass, and yield compared with the nontreated check. Dimethenamid-P applied at 630 g ai ha−1 did not affect camelina density, biomass, flowering, and yield; however, at the 1,260 g ha−1 rate, injury was as high as 60% (in the coarse-textured Kalispell soil), and plant density and yield were reduced as much as 50 and 31%, respectively, in addition to delayed flowering. Despite causing some visual injury to camelina, crop yield was not reduced by pendimethalin at the 1,060 or 2,130 g ai ha−1 rate. Pyroxasulfone caused significant crop injury, stand loss, and yield reductions, and thus does not appear to be a viable option for weed control in camelina. Camelina plants that exhibited early-season injury showed robust growth and compensatory abilities, with lack of significant effect of herbicides on late-season plant height and biomass at least in one of the two locations. On the baseis of this research, quinclorac was the safest of all herbicides tested in camelina. Dimethenamid-P, S-metolachlor, and pendimethalin also may have an acceptable level of crop safety at lower use rates for possible registration in camelina.

Camelina es un cultivo oleaginoso nuevo que es adecuado para la producción de biocombustibles en sistemas de producción en zonas secas del noroeste de los Estados Unidos. Actualmente, los productores de camelina tiene opciones limitadas de herbicidas para el control de malezas. Se evaluó la tolerancia de camelina a aplicaciones PRE de quinclorac, S-metolachlor, dimethenamid-P, pendimethalin, y pyroxasulfone en dos localidades (Kalispell en 2009 y 2010, y Huntley en 2010 y 2011) en Montana. La susceptibilidad a cada herbicidas se determinó con tres dosis diferentes. Quinclorac aplicado PRE de 280 a 840 g ai ha−1 no dañó la camelina significativamente, y no tuvo un efecto negativo en la densidad de plantas, la biomasa, la floración, y el rendimiento en ninguna de las localidades. S-metolachlor aplicado con dosis de 1,060 a 2,140 g ai ha−1 causó menos de 20% de daño a camelina, y no redujo la densidad de plantas, la biomasa, o el rendimiento, al compararse con el testigo no tratado. Dimethenamid-P aplicado a 630 g ai ha−1 no afectó la densidad de la camelina, la biomasa, la floración o el rendimiento. Sin embargo, a 1,260 g ha−1, el daño alcanzó 60% (en suelos Kalispell de textura gruesa), y la densidad de plantas y el rendimiento fueron reducidos hasta 50 y 31%, respectivamente, además de que se observó un retraso en la floración. A pesar de que causó daño visual a la camelina, el rendimiento del cultivo no se redujo con aplicaciones de pendimethalin a dosis de 1,060 ó 2,130 g ai ha−1. Pyroxasulfone causó daño significativo al cultivo, pérdida de plantas, y reducciones en el rendimiento, por lo que parece que no es una opción viable para el control de malezas en camelina. Las plantas de camelina que exhibieron daños temprano durante la temporada de crecimiento, mostraron un crecimiento robusto y la habilidad de compensar dicho daño, lo que se vio en la ausencia de efectos significativos de los herbicidas sobre altura de planta y biomasa tarde en la temporada, en al menos una de las dos localidades. Con base en esta investigación, quinclorac fue el herbicida evaluado más seguro para camelina.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2005a. Dual II Magnum® herbicide product label. Greensboro, NC Syngenta Crop Protection, Inc. 53 p.Google Scholar
Anonymous 2005b. Outlook® herbicide product label. Research Triangle Park, NC BASF Corporation. 18 p.Google Scholar
Anonymous 2008a. Paramount® herbicide product label. Research Triangle Park, NC BASF Corporation. 12 p.Google Scholar
Anonymous 2008b. Prowl® 3.3EC product label. Research Triangle Park, NC BASF Corporation. 24 p.Google Scholar
Anonymous 2012. Zidua® herbicide product label. Research Triangle Park, NC BASF Corporation. 12 p.Google Scholar
Bollman, S. L. and Sprague, C. L. 2007. Optimizing s-metolachlor and dimethenamid-p in sugarbeet microrate treatments. Weed Technol. 21:10541063.Google Scholar
Frohlich, A. and Rice, B. 2005. Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind. Crops Prod. 21:2531.Google Scholar
Grossmann, K. 1998. Quinclorac belongs to a new class of highly selective auxin herbicides. Weed Sci. 46:707716.Google Scholar
Henderson, A. E., Halest, R. H., and Soroka, J. J. 2004. Prefeeding behavior of the crucifer flea beetle, Phyllotreta cruciferae, on host and nonhost crucifers. J. Insect Behav. 17:1739.Google Scholar
Hulting, A. G. 2012. Oilseed crops. Pages 12 in Peachey, E., Ball, D., Hulting, A., Miller, D., Morishita, D., and Hutchinson, P., eds. Pacific Northwest Weed Management Handbook. Corvallis, OR PNW Public Cooperative Extension System.Google Scholar
Hulting, A. G., Dauer, J. T., Hinds-Cook, B., Curtis, D., Koepke-Hill, R. M., and Mallory-Smith, C. 2012. Management of Italian ryegrass (Lolium perenne ssp. multiflorum) in western Oregon with preemergence applications of pyroxasulfone in winter wheat. Weed Technol. 26:230235.Google Scholar
Knezevic, S. Z., Datta, A., Scott, J., and Porpiglia, P. J. 2009. Dose–response curves of KIH-485 for preemergence weed control in corn. Weed Technol. 23:3439.Google Scholar
Lenssen, A. W., Iversen, W. M., Sainju, U. M., Caesar-TonThat, T. C., Blodgett, S. L., Allen, B. L., and Evans, R. G. 2012. Yield, pests, and water use of durum and selected crucifer oilseeds in two-year rotations. Agron. J. 104:12951304.Google Scholar
Lloyd, K. L., Johnson, J. M., Gover, A. E., and Sellmer, J. C. 2011. Preemergence and postemergence suppression of kochia on rights-of-way. Weed Technol. 25:292297.CrossRefGoogle Scholar
Lyon, D. J. and Wilson, R. G. 2005. Chemical weed control in dryland and irrigated chickpea. Weed Technol. 19:959965.CrossRefGoogle Scholar
McVay, K. A. and Khan, Q. A. 2011. Camelina yield response to different plant populations under dryland conditions. Agron. J. 103:12651269.Google Scholar
Mickelson, J., Bussan, A. J., Davis, E. S., Hulting, A. G., and Dyer, W. E. 2004. Postharvest kochia (Kochia scoparia) management with herbicides in small grains. Weed Technol. 18:426431.Google Scholar
Nurse, R. E., Sikkema, P. H., and Robinson, D. E. 2011. Weed control and sweet maize (Zea mays L.) yield as affected by pyroxasulfone dose. Crop Prot. 30:789793.Google Scholar
Olson, B.L.S., Zollinger, R. K., Thompson, C. R., Peterson, D. E., Jenks, B., Moechnig, M., and Stahlman, P. W. 2011. Pyroxasulfone with and without sulfentrazone in sunflower (Helianthus annuus). Weed Technol. 25:217221.Google Scholar
Plessers, A. G., McGregor, W. G., Carson, R. B., and Nakoneshny, W. 1962. Species trials with oilseed plants, camelina. Can. J. Plant Sci. 42:452459.Google Scholar
Putman, D. H., Budin, J. T., Field, L. A., and Breene, W. M. 1993. Camelina: A promising low-input oilseed. Pages 314322 in Janick, J. and Simon, J. E., eds. New Crops. New York John Wiley & Sons.Google Scholar
Richardson, R. J., Whaley, C. M., Wilson, H. P., and Hines, T. E. 2004. Weed control and potato (Solanum tuberosum) tolerance with dimethenamid isomers and other herbicides. Am. J. Potato Res. 81:299304.Google Scholar
Sauckle, H. and Ackermann, K. 2006. Weed suppression in mixed cropped grain peas and false flax (Camelina sativa). Weed Res. 46:453461.Google Scholar
Schillinger, W. F., Wysocki, D. J., Chastain, T. G., Guy, S. O., and Karow, R. S. 2012. Camelina: planting date and method effects on stand establishment and seed yield. Field Crops Res. 130:138144.Google Scholar
Scott, R. C., Peeper, T. F. and Koscelny, J. A. 1995. Winter wheat (Triticum aestivum) yield response to winter annual broadleaf weed control. Weed Technol. 9:594598.CrossRefGoogle Scholar
Tanetani, Y., Kaku, K., Kawai, K., Fujioka, T., and Shimizu, T. 2009. Action mechanism of a novel herbicide, pyroxasulfone. Pestic. Biochem. Physiol. 95:4755.Google Scholar
Weaver, S., Cluney, K., Downs, M., and Page, E. 2006. Prickly lettuce (Lactuca serriola) interference and seed production in soybeans and winter wheat. Weed Sci. 54:496503.Google Scholar
Wysocki, D. J., Chastain, T. G., Schillinger, W. F., Guy, S. O., and Karow, R. S. 2013. Camelina: seed yield response to applied nitrogen and sulfur. Field Crops Res. 145:6066.Google Scholar