Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T21:56:29.615Z Has data issue: false hasContentIssue false

Clomazone and Starter Nitrogen Fertilizer Effects on Growth and Yield of Hybrid and Inbred Rice Cultivars

Published online by Cambridge University Press:  24 April 2017

Bobby R. Golden
Affiliation:
Associate Extension/Research Professor, Research Associate II, Research/Extension Professor, Research Associate, and Former Research/Extension Professor, Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776
Benjamin H. Lawrence
Affiliation:
Associate Extension/Research Professor, Research Associate II, Research/Extension Professor, Research Associate, and Former Research/Extension Professor, Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776
Jason A. Bond*
Affiliation:
Associate Extension/Research Professor, Research Associate II, Research/Extension Professor, Research Associate, and Former Research/Extension Professor, Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776
H. Matthew Edwards
Affiliation:
Associate Extension/Research Professor, Research Associate II, Research/Extension Professor, Research Associate, and Former Research/Extension Professor, Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776
Timothy W. Walker
Affiliation:
Associate Extension/Research Professor, Research Associate II, Research/Extension Professor, Research Associate, and Former Research/Extension Professor, Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776
*
*Corresponding author’s E-mail: jbond@drec.msstate.edu

Abstract

Cultivar and/or application of early-season (starter) nitrogen (N) fertilizer may influence rice tolerance to clomazone. Field studies were conducted to compare the response of hybrid and inbred rice cultivars to applications of clomazone and starter N fertilizer treatments. The inbred cultivar ‘Cocodrie’ and the hybrid cultivar ‘XL723’ were treated with clomazone at 0, 420, or 672 g ai ha−1 immediately after seeding, and starter N fertilizer was applied at 0 or 24 kg N ha−1 when rice reached the two-leaf growth stage. Pooled across clomazone rates and starter N fertilizer treatments, height of Cocodrie 1 week after emergence (WAE) was greater than that of XL723 in 1 of 3 yr. The difference in height between Cocodrie and XL723 resulted from greater clomazone injury 1 WAE on XL723 compared with Cocodrie. No differences in rice height 3 WAE were detected between Cocodrie and XL723 in 2 of 3 yr. when data were pooled across clomazone rates and starter N fertilizer treatments. Injury 3 WAE was similar for Cocodrie across the 3 yr., but injury on XL723 was greater in 1 of 3 yr. Rough rice yield was lower in plots treated with either rate of clomazone where no starter N fertilizer treatment was applied; however, in plots receiving a starter N fertilizer treatment, no effect of clomazone rate on rough rice yield was observed. Clomazone rate did not influence rough rice yield of Cocodrie in any single yr., but rough rice yields of XL723 were lower in plots receiving clomazone compared with plots that received no clomazone in 1 of 3 yr. Therefore, differential susceptibility to clomazone between Cocodrie and XL723 exists based on early-season response and rough rice yield. Starter N fertilizer treatments were beneficial for overcoming yield reductions due to clomazone injury.

El cultivar y/o la aplicación de fertilizante de nitrógeno (N) temprano en la temporada (inicial) podría influenciar la tolerancia del arroz a clomazone. Se realizaron estudios de campo para comparar la respuesta de cultivares de arroz híbridos y endógamos a aplicaciones de tratamientos con clomazone y fertilizante N inicial. El cultivar endógamo ‘Cocodrie’ y el cultivar híbrido ‘XL723’ fueron tratados con clomazone a 0, 420, ó 672 g ai ha−1 inmediatamente después de la siembra, y el fertilizante N inicial fue aplicado a 0 y 24 kg N ha−1 cuando el arroz alcanzó el estadio de crecimiento de dos hojas. Promediando las dosis de clomazone y los tratamientos de fertilizante inicial, la altura de Cocodrie 1 semana después de la emergencia (WAE) fue mayor que la de XL723 en 1 de 3 años. La diferencia en la altura entre Cocodrie y XL721 fue producto de un mayor daño 1 WAE en XL723 que con Cocodrie. No se detectaron diferencias en la altura del arroz 3 WAE entre Cocodrie y XL723 en 2 de 3 años cuando se promediaron las dosis de clomazone y los tratamientos de fertilizante N inicial. El daño 3 WAE fue similar para Cocodrie durante los tres años, pero el daño de XL723 fue mayor en 1 de 3 años. El rendimiento del arroz en granza fue menor en parcelas tratadas con cualquiera de las dosis de clomazone y donde no se aplicó fertilizante N inicial, mientras que en las parcelas que recibieron fertilizante N inicial no se vio ningún efecto de la dosis de clomazone sobre el rendimiento del arroz en granza. La dosis de clomazone no influenció el rendimiento del arroz en granza de Cocodrie en ninguno de los años, pero los rendimientos de arroz en granza de XL723 fueron más bajos en parcelas que recibieron clomazone cuando se compararon con parcelas que no recibieron clomazone en 1 de 3 años. Entonces, con base en la respuesta de la planta temprano durante la temporada de crecimiento y el rendimiento del arroz en granza, existe una susceptibilidad diferencial a clomazone entre Cocodrie y XL723. Los tratamientos con fertilizante N inicial fueron beneficiales para prevenir reducciones en el rendimiento producto del daño causado por clomazone.

Type
Weed Management-Major Crops
Copyright
© Weed Science Society of America, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Daniel Stephenson, Louisana State University Agricultural Center.

References

Literature Cited

Anonymous (2016) RiceTec Hybrid Rice Management Guidelines. http://www.ricetec.com/grower-resources/management-guidelines/. Accessed February 24, 2016Google Scholar
Baldwin, FL (1995) A consolidated approach to weed management in rice (final report). Pages 3237 in Wells BR ed. Rice Research Status 1994. Arkansas Agricultural Experiment Station Research Ser. 446. 251 pGoogle Scholar
Baltazar, AM, Smith, RJ (1994) Propanil-resistant barnyardgrass (Echinochloa crus-galli) control in rice (Oryza sativa). Weed Technol 8:576581 Google Scholar
Bednarz, CW, Harris, GH, Shurley, WD (2000) Agronomic and economic analyses of cotton starter fertilizers. Agron J 92:766771 CrossRefGoogle Scholar
Bond, J, Golden, B, Lawrence, B (2016) Rice: weed response ratings for rice herbicides. Page 69 in Byrd JD Jr ed. Weed Control Guidelines for Mississippi. Mississippi State, MS: Mississippi State University Extension Service, Mississippi Agricultural and Forestry Experiment Station Google Scholar
Bond, JA, Walker, TW (2011) Differential tolerance of Clearfield® cultivars to imazamox. Weed Technol 25:192197 Google Scholar
Bond, JA, Walker, TW (2012) Effect of postflood quinclorac applications on commercial rice cultivars. Weed Technol 26:183188 Google Scholar
Bond, JA, Walker, TW, Webster, EP, Buehring, NW, Harrell, DL (2007) Rice cultivar response to penoxsulam. Weed Technol 21:361365 Google Scholar
Buehring, NW, Walker, TW, Bond, JA (2008) Rice stand establishment. Pages 915 in Miller T, ed. Mississippi’s Rice Growers’ Guide. http://msucares.com/pubs/publications/p2255.pdf. Accessed September 2, 2015Google Scholar
Crawford, SH, Jordan, DL (1995) Comparison of single and multiple applications of propanil and residual herbicides in dry-seeded rice (Oryza sativa). Weed Technol 9:153157 Google Scholar
De Datta, SK (1981) Principles and Practices of Rice Production. New York, NY: Wiley and Sons Google Scholar
Deng, N, Ling, X, Sun, Y, Zhang, C, Fahad, S, Peng, S, Cui, K, Nie, HJ (2015) Influence of temperature and solar radiation on grain yield and quality in irrigated rice system. Europ J Agron 64:3746 CrossRefGoogle Scholar
Duke, SO, Paul, RN, Becerril, JM, Schmidt, JH (1991) Clomazone causes accumulation of sesquiterpenoids in cotton (Gossypium hirsutum L.). Weed Sci 39:339346 Google Scholar
Harrison, HF Jr, Jackson, DM (2011) Greenhouse assessment of differences in clomazone tolerance among sweetpotato cultivars. Weed Technol 25:501505 Google Scholar
Jordan, DL, Bollich, PK, Burns, AB, Walker, DM (1998) Rice (Oryza sativa) response to clomazone. Weed Sci 46:374380 Google Scholar
Kiefer, DW (1989) Tolerance of corn (Zea mays) line to clomazone. Weed Sci 37:622628 Google Scholar
Lamond, RE, Gordon, WB (2001) Developing more effective starter fertilizers for conservation tillage production systems. Fluid Forum Proc 18:132137 Google Scholar
Malik, MS, Burgos, NR, Talbert, RE (2010) Confirmation and control of propanil-resistant and quinclorac-resistant barnyardgrass (Echniochloa crus-galli) in rice. Weed Technol 24:226233 Google Scholar
Moldenhauer, KAK, Gibbons, JH (2003) Rice morphology and development. Pages 103127 in Smith CW & Dilday RH, eds. Rice: Origin, History, Technology, and Production. Hoboken, NJ: J Wiley & Sons Google Scholar
Mudge, CR, Webster, EP, Leon, CT, Zhang, W (2005) Rice (Oryza sativa) cultivar tolerance to clomazone in water-seeded production. Weed Technol 19:907911 Google Scholar
Nemoto, K, Morita, S, Baba, T (1995) Shoot and root development in rice related to the phyllochron. Crop Sci 35:2429 Google Scholar
O’Barr, JH, McCauley, GN, Bovey, RW, Sensman, SA, Chandler, JM (2007) Rice response to clomazone as influenced by application rate, soil type, and planting date. Weed Technol 21:199205 Google Scholar
Osborne, SL, Riedell, WE (2006) Starter nitrogen fertilizer impact on soybean yield and quality in the northern Great Plains. Agron J 98:15691574 Google Scholar
Pantone, DJ, Baker, JB (1992) Varietal tolerance of rice (Oryza sativa) to bromoxynil and triclopyr at different growth stages. Weed Technol 6:969974 CrossRefGoogle Scholar
Ross, J, Eubank, T, Norsworthy, J, Scott, B (2015) Metribuzin Tolerance Testing of Soybean Varieties 2015. http://mssoy.org/wp-content/uploads/2014/12/2014-SOYBEAN-VARIETY-METRIBUZIN-SCREENING-UA1.pdf. Accessed November 11, 2016Google Scholar
Saxton, AM (1998) A macro for converting mean separation output to letter groupings in Proc Mixed. Pages 1243–1246 in Proc. 23rd SAS Users Group International, SAS Inst., Cary, NC, Nashville, TN, March 22–25Google Scholar
Scherder, EF, Talbert, RE, Clark, SD (2004) Rice (Oryza sativa) cultivar tolerance to clomazone. Weed Technol 18:140144 Google Scholar
Sha, X, Linscombe, SD, Blance, SB, Groth, DE (2009) Yield advantage of hybrid rice over conventional and Clearfield® long-grain rice in the southern United States. Page 687 in Xie F & Hardy B, eds. Accelerated Hybrid Rice Development. Los Banos (Philippines): International Rice Research Institute Google Scholar
Shaner, DL, ed (2014) Herbicide Handbook. 10th edn. Lawrence, KS: Weed Science Society of America. 109 pGoogle Scholar
Smith, RJ Jr, Hill, JE (1990) Weed control technology in U.S. Pages 314327 in Grayson BT, Green MB & Coping LD, eds. Pest Management in Rice. London: Elsevier Google Scholar
Street, JE, Bollich, RK (2003) Rice production. Page 284 in Smith CW & Dilday RH, eds. Rice Origin, History, Technology, and Production. Hoboken, NJ: John Wiley & Sons Google Scholar
Street, JE, Mueller, TC (1993) Rice (Oryza sativa) weed control with soil applications of quinclorac. Weed Technol 7:600604 Google Scholar
Tsuchiya, T, Bastawisi, A, Yan, ZY, Moon, HP, Ikehashi, H (2003) Opportunities for and challenges to developing and using hybrid rice technology for temperate countries. Page 54 in Virmani SS, Mao CX & Hardy B, eds. Hybrid Rice for Food Security, Poverty Alleviation, and Environmental Protection. Los Banos (Philippines): International Rice Research Institute Google Scholar
Virmani, SS (2005) Heterosis in rice for increasing yield, production efficiency, and rural employment opportunities. Pages 162166 in Toriyama K, Heong KL & Hardy B, eds. Rice is Life: Scientific Perspective for the 21st Century. Proceedings of the World Rice Research Conference in Tokyo and Tsukuba, Japan, 4–7 November 2004. Los Banos (Philippines): International Rice Research Institute Google Scholar
Walker, TW, Bond, JA, Ottis, BV, Harrell, DL (2008). The effects of starter nitrogen to rice seeded at various densities. Crop Manag doi: 10.1094/CM-2008-0911-01-RS Google Scholar
Walker, TW, Norman, RJ, Ottis, BV, Bond, JA (2008) Starter fertilizer for delayed-flood rice – agronomic effects (North America). Better Crops 92:45 Google Scholar
Webster, EP, Baldwin, FL, Dillion, TL (1999) The potential for clomazone use in rice (Oryza sativa). Weed Technol 13:390393 Google Scholar
Webster, TM (2012) Weed Survey-Southern States. Page 278 in Proceedings of the 65th Southern Weed Science Society. Las Cruces, NM: Southern Weed Science Society Google Scholar
Yang, W, Peng, SB, Laza, RC, Visperas, RM, Dionisio-Sese, ML (2007) Grain yield and yield attributes of new plant type and hybrid rice. Crop Sci 47:13931400 Google Scholar
Yoshida, S (1973) Effects of temperature on growth of the rice plant (Oryza sativa) in a controlled environment. Soil Sci Plant Nut 19:299310 Google Scholar
Yoshida, S (1981) Fundamentals of rice crop science. Manila, Philippines: IRRI Google Scholar
Zhang, W, Webster, EP (2002) Shoot and root growth of rice (Oryza sativa) in response to V-10029. Weed Technol 16:769772 Google Scholar
Zhang, W, Webster, EP, Blouin, DC (2005) Response of rice and barnyardgrass (Echinochloa crus-galli) to rates and timings of clomazone. Weed Technol 19:528531 Google Scholar
Zhang, W, Webster, EP, Blouin, DC, Linscombe, SD (2004) Differential tolerance of rice (Oryza sativa) varieties to clomazone. Weed Technol 18:7376 Google Scholar