Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T11:33:50.901Z Has data issue: false hasContentIssue false

Common Lambsquarters Response to Glyphosate across Environments

Published online by Cambridge University Press:  20 January 2017

Evan C. Sivesind
Affiliation:
Department of Agronomy, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706
John M. Gaska
Affiliation:
Department of Agronomy, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706
Mark R. Jeschke
Affiliation:
Department of Agronomy, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706
Chris M. Boerboom
Affiliation:
Department of Agronomy, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706
David E. Stoltenberg*
Affiliation:
Department of Agronomy, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706
*
Corresponding author's E-mail: destolte@wisc.edu

Abstract

We conducted a series of field experiments to determine the role of several factors that might contribute to the inconsistent control of common lambsquarters with glyphosate. Experiments in 2006 and 2007 determined common lambsquarters response to glyphosate under a wide range of measured environmental conditions. Glyphosate was applied at 0.84 kg ae ha−1 plus 3.8 kg ha−1 ammonium sulfate (AMS) to 10-cm-tall plants on 18 dates in each year and to 20-cm-tall plants on 18 dates in 2007. Control was less for six application dates relative to control for 48 other dates. Poor control was attributed to rainfall on one of these six dates, but for the other five dates, regression analysis did not identify any significant relationships between environmental conditions (relative humidity, temperature at time of treatment, or minimum and maximum temperature pre- and posttreatment) and control, even though a wide range of conditions occurred. To determine the effects of plant growth stage on control, glyphosate was applied at 0.1 to 3.2 kg ha−1 plus 3.8 kg ha−1 AMS to 10- and 20-cm-tall plants at four sites. The glyphosate ED50 value (the effective dose that reduced shoot mass by 50% relative to nontreated plants) was 1.9 to 3.0 times greater for 20- than 10-cm-tall plants in three site-years, but was not affected by plant height in one site-year. We also conducted experiments to determine the effect of rainfall on glyphosate efficacy. Across years, common lambsquarters control increased from 44 to 75% as the interval between glyphosate application (0.84 kg ha−1 + 3.8 kg ha−1 AMS) and simulated rainfall increased from 0.5 to 4.0 h, respectively. Our results did not identify environmental conditions that explained reduced glyphosate efficacy in all cases, but they suggest that rainfall after application and plant height can be important factors contributing to the inconsistent control of common lambsquarters.

Realizamos una serie de experimentos de campo para determinar el papel de varios factores que pudieran contribuir a la inconsistencia en el control de Chenopodium album con glifosato. Los experimentos en el 2006 y 2007 determinaron la respuesta de C. album al glifosato bajo un amplio rango de condiciones ambientales. El glifosato fue aplicado a 0.84 kg ea ha−1 más 3.8 kg ha−1 de sulfato de amonio (AMS), a plantas de 10 cm de altura en 18 fechas en cada año y a plantas de 20 cm de altura en 18 fechas en el 2007. El control fue menor para seis fechas de aplicación, en relación al control en las otras 48 fechas. El escaso control se atribuyó a la precipitación en una de estas seis fechas, pero para las otras cinco, un análisis de regresión no identificó ninguna relación significativa entre las condiciones ambientales (humedad relativa, temperatura al momento del tratamiento o la temperatura mínima y máxima pre y post tratamiento) y el control, aunque existió un amplio rango de condiciones. Para determinar los efectos de la etapa de crecimiento de la planta en el control, se aplicó glifosato de 0.1 a 3.2 kg ha−1 más 3.8 kg ha−1 AMS a plantas de 10 y 20 cm de altura en cuatro sitios. El valor ED50 del glifosato, (o sea, la dosis efectiva que redujo la masa de la parte aérea de la planta en un 50% en relación a las plantas no tratadas), fue de 1.9 a 3.0 veces mayor para las plantas de 20 cm de altura que para las de 10 cm en tres sitios-años, pero no fue afectado por la altura de la planta en un sitio-año. También realizamos experimentos para determinar el efecto de la precipitación en la eficacia del glifosato. Promediando los años, el control de C. album se incrementó de 44 a 75% al incrementarse de 0.5 a 4.0 h respectivamente, el intervalo entre la aplicación del glifosato (0.84 kg ha−1 más 3.8 kg ha−1 AMS) y la precipitación simulada. Nuestros resultados no identificaron condiciones ambientales que explicaran la reducción de la eficacia de glifosato en todos los casos, pero sugieren que la precipitación después de la aplicación y la altura de la planta, puedan ser factores importantes que contribuyen al control inconsistente de C. album.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Pioneer Hi-Bred International, Inc., 7300 NW 62nd Avenue, P.O. Box 1004, Johnston, IA 50131-1004;

Current address: North Dakota State University Extension Service, Department 7061, P.O. Box 6050, Fargo, ND 58108-6050.

References

Literature Cited

Adkins, S. W., Tanpipat, S., Swarbrick, J. T., and Boersma, M. 1998. Influence of environmental factors on glyphosate when applied to Avena fatua or Urochloa panicoides . Weed Res. 38:129138.Google Scholar
Al-Khatib, K., Parker, R., and Fuerst, E. P. 1992. Foliar absorption and translocation of herbicides from aqueous solution and treated soil. Weed Sci. 40:281287.Google Scholar
Bariuan, J. V., Reddy, K. N., and Wills, G. D. 1999. Glyphosate injury, rainfastness, absorption, and translocation in purple nutsedge (Cyperus rotundus). Weed Technol. 13:112119.Google Scholar
Boerboom, C. 2009. Ready to tackle lambsquarters? University of Wisconsin Extension. http://ipcm.wisc.edu/WCMNews/tabid/53/EntryId/686/Ready-to-Tackle-Lambsquarters.aspx. Accessed: February 3, 2010.Google Scholar
Cousens, R. 1985. An empirical model relating crop yield to weed and crop density and a statistical comparison with other models. J. Agric. Sci 105:513521.Google Scholar
Gannon, T. W. and Yelverton, F. H. 2008. Effect of simulated rainfall on tall fescue (Lolium arundinaceum) control with glyphosate. Weed Technol. 22:553557.Google Scholar
Givens, W. A., Shaw, D. R., Johnson, W. G., Weller, S. C., Young, B. G., Wilson, R. G., Owen, M. D. K., and Jordan, D. 2009a. A grower survey of herbicide use patterns in glyphosate-resistant cropping systems. Weed Technol. 23:156161.Google Scholar
Givens, W. A., Shaw, D. R., Kruger, G. R., Johnson, W. G., Weller, S. C., Young, B. G., Wilson, R. G., Owen, M. D. K., and Jordan, D. 2009b. Survey of tillage trends following the adoption of glyphosate-resistant crops. Weed Technol. 23:150155.Google Scholar
Harrison, S. K. 1990. Interference and seed production by common lambsquarters (Chenopodium album) in soybean (Glycine max). Weed Sci. 38:113118.Google Scholar
Henson, I. E. 1970. The effects of light, potassium nitrate and temperature on the germination of Chenopodium album L. Weed Res. 10:2739.Google Scholar
Hoss, N. E., Al-Khatib, K., Peterson, D. E., and Loughin, T. M. 2003. Efficacy of glyphosate, glufosinate, and imazethapyr on selected weed species. Weed Sci. 51:110117.Google Scholar
Johnson, S. R., Strom, S. S., and Grillo, K. 2007. Quantification of the Impacts on US Agriculture of Biotechnology-Derived Crops Planted in 2006. http://www.ncfap.org/documents/2007biotech_report/Quantification_of_the_Impacts_on_US_Agriculture_of_Biotechnology.pdf. Washington DC: National Center for Food and Agricultural Policy. Accessed: January 28, 2010.Google Scholar
Jordan, T. N. 1977. Effects of temperature and relative humidity on the toxicity of glyphosate to bermudagrass (Cynodon dactylon). Weed Sci. 25:448451.Google Scholar
Klevorn, T. B. and Wyse, D. L. 1984. Effect of soil temperature and moisture on glyphosate and photoassimilate distribution in quackgrass (Agropyron repens). Weed Sci. 32:402407.Google Scholar
Krausz, R. F., Kapusta, G., and Matthews, J. L. 1996. Control of annual weeds with glyphosate. Weed Technol. 10:957962.Google Scholar
Kruger, G. R., Johnson, W. G., Weller, S. C., Owen, M. D. K., Shaw, D. R., Wilcut, J. W., Jordan, D. L., Wilson, R. G., Bernards, M. L., and Young, B. G. 2009. U.S. grower views on problematic weeds and changes in weed pressure in glyphosate-resistant corn, cotton, and soybean cropping systems. Weed Technol. 23:162166.Google Scholar
Lewis, J. 1973. Longevity of crop and weed seeds: survival after 20 years in soil. Weed Res. 13:179191.Google Scholar
Littell, R. C., Stroup, W. W., and Freund, R. J. 2002. SAS for linear models, 4th ed. Cary, NC SAS Institute. 496 p.Google Scholar
Martinson, K. B., Sothern, R. B., Koukkari, W. L., Durgan, B. R., and Gunsolus, J. L. 2002. Circadian response of annual weeds to glyphosate and glufosinate. Chronobiol. Int 19:405422.Google Scholar
Masiunas, J. B. and Weller, S. C. 1988. Glyphosate activity in potato (Solanum tuberosum) under different temperature regimes and light levels. Weed Sci. 36:137140.Google Scholar
McIntyre, G. I. and Hsiao, A. I. 1982. Influence of nitrogen and humidity on rhizome bud growth and glyphosate translocation in quackgrass (Agropyron repens). Weed Sci. 30:655660.Google Scholar
McWhorter, C. G. and Azlin, W. R. 1978. Effects of environment on the toxicity of glyphosate to johnsongrass (Sorghum halepense) and soybean (Glycine max). Weed Sci. 26:605608.Google Scholar
McWhorter, C. G., Jordan, T. N., and Wills, G. D. 1980. Translocation of 14C-glyphosate in soybeans (Glycine max) and johnsongrass (Sorghum halepense). Weed Sci. 28:113118.Google Scholar
Miller, D. K., Griffin, J. L., and Richard, E. P. Jr. 1998. Johnsongrass (Sorghum halepense) control and rainfastness with glyphosate and adjuvants. Weed Technol. 12:617622.Google Scholar
Mohr, K., Sellers, B. A., and Smeda, R. J. 2007. Application time of day influences glyphosate efficacy. Weed Technol. 21:713.Google Scholar
Motulsky, H. and Christopoulos, A. 2004. Fitting Models to Biological Data Using Linear and Nonlinear Regression. A Practical Guide to Curve Fitting. New York Oxford University Press. 351 p.Google Scholar
Mulugeta, D. and Stoltenberg, D. E. 1998. Influence of cohorts on Chenopodium album demography. Weed Sci. 46:6570.Google Scholar
Pandy, H. N., Misra, K. C., and Mukherjee, K. L. 1971. Phosphate uptake and its incorporation in some crop plants and their associated weeds. Ann. Bot. N. S. 35:367372.Google Scholar
Piepho, H. P., Büchse, A., and Emrich, K. 2003. A hitchhiker's guide to mixed models for randomized experiments. J. Agron. Crop Sci 189:310322.Google Scholar
Reddy, K. N. 2000. Factors affecting toxicity, absorption, and translocation of glyphosate in redvine (Brunnichia ovata). Weed Technol. 14:457462.Google Scholar
Schuster, C. L., Shoup, D. E., and Al-Khatib, K. 2007. Response of common lambsquarters (Chenopodium album) to glyphosate as affected by growth stage. Weed Sci. 55:147151.Google Scholar
Service, R. F. 2007. A growing threat down on the farm. Science 316:114117.Google Scholar
Sharma, S. D. and Singh, M. 2001. Environmental factors affecting absorption and bio-efficacy of glyphosate in Florida beggarweed (Desmodium tortuosum). Crop Prot 20:511516.Google Scholar
Sikkema, P. H., Shropshire, C., Hamill, A. S., Weaver, S. E., and Cavers, P. B. 2004. Response of common lambsquarters (Chenopodium album) to glyphosate application timing and rate in glyphosate-resistant corn. Weed Technol. 18:908916.Google Scholar
Stewart, C. L., Nurse, R. E., and Sikkema, P. H. 2009. Time of day impacts postemergence weed control in corn. Weed Technol. 23:346355.Google Scholar
Stoltenberg, D. E. and Wiederholt, R. J. 1995. Giant foxtail (Setaria faberi) resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides. Weed Sci. 43:527535.Google Scholar
Tanpipat, S., Adkins, S. W., Swarbrick, J. T., and Boersma, M. 1997. Influence of selected environmental factors on glyphosate efficacy when applied to awnless barnyard grass (Echinochloa colona (L.) Link). Aust. J. Agric. Res 48:695702.Google Scholar
Tharp, B. E., Schabenberger, O., and Kells, J. J. 1999. Response of annual weed species to glufosinate and glyphosate. Weed Technol. 13:542547.Google Scholar
Vengris, J. 1955. Plant nutrient competition between weeds and corn. Agron. J. 47:213215.Google Scholar
Waltz, A. L., Martin, A. R., Roeth, F. W., and Lindquist, J. L. 2004. Glyphosate efficacy on velvetleaf varies with application time of day. Weed Technol. 18:931939.Google Scholar
Wanamarta, G. and Penner, D. 1989. Foliar absorption of herbicides. Rev. Weed Sci 4:215231.Google Scholar
Ziska, L. H., Teasdale, J. R., and Bunce, J. A. 1999. Future atmospheric carbon dioxide may increase tolerance to glyphosate. Weed Sci. 47:608615.Google Scholar