Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T11:44:16.558Z Has data issue: false hasContentIssue false

A Comparison of Weed Control in Herbicide-Resistant, Herbicide-Tolerant, and Conventional Corn

Published online by Cambridge University Press:  20 January 2017

Ian C. Burke*
Affiliation:
Box 7620, Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620
Walter E. Thomas
Affiliation:
Box 7620, Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620
Jayla R. Allen
Affiliation:
Bayer CropScience, 2 TW Alexander Drive, Research Triangle Park, NC 27709
Jim Collins
Affiliation:
Bayer CropScience, 2 TW Alexander Drive, Research Triangle Park, NC 27709
John W. Wilcut
Affiliation:
Box 7620, Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620
*
Corresponding author's E-mail: icburke@wsu.edu.

Abstract

Experiments were conducted at three North Carolina research stations in 2003 to evaluate weed control and corn yield in glyphosate-resistant, glufosinate-resistant, imidazolinone-tolerant, and conventional corn weed management systems. Late-season control of common lambsquarters, large crabgrass, and yellow nutsedge increased with metolachlor PRE compared with no PRE herbicide treatment. Common lambsquarters, pitted morningglory, entireleaf morningglory, spurred anoda, and tropic croton control was improved by a single early POST (EPOST) application regardless of herbicide system. Control of common lambsquarters, pitted morningglory, entireleaf morningglory, and spurred anoda was similar for glyphosate and glufosinate systems for each POST over-the-top (POT) herbicide system. A single EPOST application of imazethapyr plus imazapyr to imidazolinone-tolerant corn controlled common lambsquarters, pitted morningglory, entireleaf morningglory, and spurred anoda and was better than a single EPOST application of glyphosate, glufosinate, or nicosulfuron. Tropic croton was controlled ≥ 95% with glufosinate or glyphosate, applied once or twice, or in mixture with metolachlor. A single EPOST application of imazethapyr plus imazapyr or nicosulfuron did not control tropic croton. Common lambsquarters, entireleaf morningglory, large crabgrass, Palmer amaranth, and yellow nutsedge control was greater with a late-POST–directed (LAYBY) of ametryn than no LAYBY. Systems that did not include a POT herbicide system had the lowest percentage in the weed-free yield and the lowest yield. Treatments that included a POT system with or without a PRE treatment of metolachlor yielded within 5% of the weed-free treatment, regardless of herbicide system.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, D. M., Swanton, C. J., Hall, J. C., and Mersey, B. G. 1993a. The influence of temperature and relative humidity on the efficacy of glufosinate-ammonium. Weed Res 33:139147.Google Scholar
Anderson, D. M., Swanton, C. J., Hall, J. C., and Mersey, B. G. 1993b. The influence of soil moisture, simulated rainfall, and time of application on the efficacy of glufosinate-ammonium. Weed Res 33:149160.Google Scholar
Anonymous 2005. Acreage 2005. Washington, DC: U.S. Department of Agriculture–National Agriculture Statistics Service. Version June 30, 2005.http://usda.mannlib.cornell.edu/usda/nass/Acre//2000s/2005/Acre-06-30-2005.pdf.Google Scholar
Anonymous 2007a. Acreage 2007. Washington, DC: U.S. Department of Agriculture–National Agriculture Statistics Service. Version June 29, 2007.http://usda.mannlib.cornell.edu/usda/current/Acre/Acre-06-29-2007.pdf.Google Scholar
Anonymous 2007b. Accent® herbicide product label. DuPont Publication No. H-65379. Wilmington, DE: DuPont. 13 p.Google Scholar
Anonymous 2007c. Evik® herbicide product label. Syngenta Publication No. SCP 786A-L19F 0805. Greensboro, NC: Syngenta Crop Protection. 9 p.Google Scholar
Anonymous 2007d. Dual Magnum® herbicide product label. Syngenta Publication No. SCP 816A-L1P 0404. Greensboro, NC: Syngenta Crop Protection. 16 p.Google Scholar
Anonymous 2007e. Roundup WeatherMax® herbicide product label. Monsanto Publication No. 63003G5-40. St. Louis, MO: Monsanto Co. 49 p.Google Scholar
Armel, G. R., Wilson, H. R., Richardson, R. J., and Hines, T. E. 2003. Use of mixtures of mesotrione, imazethapyr, and imazethapyr plus imazapyr in imidazolinone-resistant corn (Zea mays). Weed Technol 17:674679.Google Scholar
Askew, S. D. and Wilcut, J. W. 2001. Tropic croton interference in cotton. Weed Sci 49:184189.Google Scholar
Blanchard, P. E. and Donald, W. W. 1997. Herbicide contamination of groundwater beneath claypan soils in north-central Missouri. J. Environ. Qual 26:16121621.Google Scholar
Bosnic, A. C. and Swanton, C. J. 1997. Influence of barnyardgrass (Echinochloa crus-galli) time of emergence and density on corn (Zea mays). Weed Sci 45:276282.Google Scholar
Bradley, P. R., Johnson, W. G., Hart, S. E., Buesinger, M. L., and Massey, R. E. 2000. Economics of weed management in glufosinate-resistant corn (Zea mays L.). Weed Technol 14:495501.CrossRefGoogle Scholar
Buhler, D. D., Randall, G. W., Koskinen, W. C., and Wyse, D. L. 1993. Atrazine and alachlor losses from subsurface tile drainage of clay loam soil. J. Environ. Qual 22:583588.Google Scholar
Burke, I. C., Thomas, W. E., Spears, J. F., and Wilcut, J. W. 2003a. Influence of environmental factors on after-ripened crowfootgrass (Dactyloctenium aegyptium) seed germination. Weed Sci 51:342347.Google Scholar
Burke, I. C., Thomas, W. E., Spears, J. F., and Wilcut, J. W. 2003b. Influence of environmental factors on broadleaf signalgrass (Brachiaria platyphylla) germination. Weed Sci 51:683689.Google Scholar
Burke, I. C. and Wilcut, J. W. 2004. Weed management in cotton with CGA-362-622, fluometuron, and pyrithiobac. Weed Technol 18:268276.Google Scholar
Carey, J. B. and Kells, J. J. 1995. Timing of postemergence herbicide applications to maximize weed control and corn (Zea mays) yield. Weed Technol 9:356361.Google Scholar
Chomas, A. J. and Kells, J. J. 2004. Triazine-resistant common lambsquarters (Chenopodium album) control in corn with preemergence herbicides. Weed Technol 18:551554.Google Scholar
Corbett, J. L., Askew, S. D., Thomas, W. E., and Wilcut, J. W. 2004. Weed efficacy evaluations for bromoxynil, glufosinate, glyphosate, pyrithiobac, and sulfosate. Weed Technol 18:443453.Google Scholar
Culpepper, A. S. and York, A. C. 1999. Weed management in glufosinate-resistant corn (Zea mays). Weed Technol 13:324333.Google Scholar
Fausey, J. C., Kells, J. J., Swinton, S. M., and Renner, K. A. 1997. Giant foxtail (Setaria faberi) interference in nonirrigated corn (Zea mays). Weed Sci 45:256260.Google Scholar
Fausey, J. C. and Renner, K. A. 1997. Germination, emergence, and growth of giant foxtail (Setaria faberi) and fall panicum (Panicum dichotomiflorum). Weed Sci 45:423425.Google Scholar
Ferrell, J. A. and Witt, W. W. 2002. Comparison of glyphosate with other herbicides for weed control in corn (Zea mays): Efficacy and economics. Weed Technol 16:701706.Google Scholar
Frans, R. E., Talbert, R., Marx, D., and Crowley, H. 1986. Experimental design and techniques for measuring and analyzing plant responses to weed control practices. Pages 3738. in. N. D. Camper, ed. Research Methods in Weed Science. 3rd ed. Champaign, IL: Southern Weed Science Society.Google Scholar
Hall, M. R., Swanton, C. J., and Anderson, G. W. 1992. The critical period of weed control in grain corn (Zea mays). Weed Sci 40:441447.Google Scholar
Hart, S. E. and Wax, L. M. 1999. Review and future prospectus on the impacts of herbicide resistant maize on weed management. Maydica 44:173192.Google Scholar
Heap, I. 2007. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: July 6, 2007.Google Scholar
Johnson, W. C. 1989. Weed Facts: Texas panicum. Athens, GA: University of Georgia Cooperative Extension Service Bull. 1008.Google Scholar
Johnson, W. G., Bradley, P. R., Hart, S. E., Buesinger, M. L., and Massey, R. E. 2000. Efficacy and economics of weed management in glyphosate-resistant corn (Zea mays). Weed Technol 14:5765.Google Scholar
Jones, C. A., Chandler, J. M., Morrison, J. E. Jr., Senseman, S. A., and Tingle, C. H. 2001. Glufosinate combinations and row spacing for weed control in glufosinate resistant corn (Zea mays L.). Weed Technol 15:141147.Google Scholar
Jordan, D. L., Wilcut, J. W., and Fortner, L. D. 1994. Utility of clomazone for annual grass and broadleaf weed control in peanut (Arachis hypogaea). Weed Technol 8:2327.CrossRefGoogle Scholar
Klingaman, T. E., King, C. A., and Oliver, L. R. 1992. Effect of application rate, weed species, and weed stage of growth on imazethapyr activity. Weed Sci 40:227232.Google Scholar
Knake, E. L. and Slife, F. E. 1965. Giant foxtail seeded at various times in corn and soybeans. Weed Sci 13:331334.Google Scholar
Krausz, R. F. and Kapusta, G. 1998. Total postemergence weed control in imidazolinone-resistant corn (Zea mays). Weed Technol 12:151156.Google Scholar
Krutz, L. J., Zablotowicz, R. M., Reddy, K. N., Koger, C. H., and Weaver, M. A. 2007. Enhanced degradation of atrazine under field conditions correlates with a loss of weed control in the glasshouse. Pest. Manage. Sci 63:2331.Google Scholar
Massinga, R. A., Currie, R. S., Horak, M. J., and Boyer, J. 2001. Interference of Palmer amaranth in corn. Weed Sci 49:202208.Google Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J. 75:153155.CrossRefGoogle Scholar
Monks, C. D., Wilcut, J. W., Richburg, J. S., Hatton, J. H., and Patterson, M. G. 1996. Effect of AC 263,222, imazethapyr, and nicosulfuron on weed control and imidazolinone-tolerant corn (Zea mays) yield. Weed Technol 10:822827.Google Scholar
Myers, M. G. and Harvey, R. G. 1993. Triazine-resistant common lambsquarters (Chenopodium album L) control in field corn (Zea mays L). Weed Technol 7:884889.Google Scholar
Nishimoto, R. K. and McCarty, L. B. 1997. Fluctuating temperature and light influence seed germination of goosegrass (Eleusine indica). Weed Sci 45:426429.Google Scholar
Nolte, S. A. and Young, B. G. 2002. Efficacy and economic return on investment for conventional and herbicide-resistant corn (Zea mays L.). Weed Technol 16:371378.Google Scholar
Owen, M. D. K. 2000. Current use of transgenic herbicide-resistant soybean and corn in the USA. Crop Prot 19:765771.Google Scholar
Pantone, D. J., Young, R. A., Buhler, D. D., Eberlein, C. V., Koskinen, W. C., and Forcella, F. 1992. Water quality impacts associated with pre- and postemergence applications of atrazine in maize. J. Environ. Qual 21:567573.Google Scholar
Shaner, D. L. 2000. The impact of glyphosate-tolerant crops on the use of other herbicides and on resistance management. Pest. Manag. Sci 56:320326.Google Scholar
Shaner, D. L. and Henry, W. B. 2007. Field history and dissipation of atrazine and metolachlor in Colorado. J. Environ. Qual 36:128134.Google Scholar
Sprankle, P., Meggitt, W. F., and Penner, D. 1975. Adsorption, mobility, and microbial degradation of glyphosate in soil. Weed Sci 23:229234.Google Scholar
Thomas, W. E., Askew, S. D., and Wilcut, J. W. 2004a. Tropic croton interference in peanut. Weed Technol 18:119123.Google Scholar
Thomas, W. E., Burke, I. C., and Wilcut, J. W. 2004b. Weed management in glyphosate-resistant corn with glyphosate and halosulfuron. Weed Technol 18:10491057.Google Scholar
Thomas, W. E., Burke, I. C., and Wilcut, J. W. 2004c. Weed management in glyphosate-resistant corn with glyphosate, halosulfuron, and mesotrione. Weed Technol 18:826834.Google Scholar
Thomas, W. E., Pline-Srnic, W. A., Thomas, J. F., Edmisten, K. L., Wells, R., and Wilcut, J. W. 2004d. Glyphosate negatively affects pollen viability but not pollination and seed set in glyphosate-resistant corn. Weed Sci 52:725734.Google Scholar
Thomas, W. E., Everman, W. J., Allen, Jayla, Collins, Jim, and Wilcut, J. W. 2007. Economic assessment of weed management systems in glufosinate-resistant, glyphosate-resistant, imidazolinone-tolerant, and nontransgenic corn. Weed Technol 21:191198.Google Scholar
Van Duyn, J. W. 2003. Insect control in field corn. Pages 6264. in. S. J. Toth Jr., ed. North Carolina Agricultural Chemical Manual. Raleigh, NC: North Carolina State University.Google Scholar
Vizantinopoulos, S. and Katranis, N. 1998. Weed management of Amaranthus spp. in corn (Zea mays). Weed Technol 12:145150.Google Scholar
Wauchope, R. D., Estesm, T. L., Allen, R., Baker, J. L., Hornsby, A. G., Jones, R. L., Richards, R. P., and Gustafson, D. I. 2002. Predicted impact of transgenic and glyphosate-resistant soybean (Glycine max). Weed Technol 41:615620.Google Scholar
Webster, T. M. and Coble, H. D. 1997. Purple nutsedge (Cyperus rotundus) management in corn (Zea mays) and cotton (Gossypium hirsutum) rotations. Weed Technol 11:543548.Google Scholar
Wilcut, J. W. 1991. Tropic croton (Croton glandulosus) control in peanut (Arachis hypogaea). Weed Technol 5:795798.Google Scholar
Wilcut, J. W., Coble, H. D., York, A. C., and Monks, D. W. 1995. The niche for herbicide resistant crops in U. S. agriculture. Pages 213230. in. S. O. Duke, ed. Herbicide-Resistant Crops: Agricultural, Environmental, Economic, Regulatory, and Technical Aspects. Boca Raton, FL: CRC and Lewis Publishers.Google Scholar
York, A. C., Jordan, D. L., Smith, W. D., and Fisher, L. R. 2003. Chemical weed control in field crops. Pages 306315. in. S. J. Toth Jr., ed. North Carolina Agricultural Chemical Manual. Raleigh, NC: North Carolina State University.Google Scholar