Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T12:40:11.612Z Has data issue: false hasContentIssue false

Confirmation and Control of Glyphosate-Resistant Giant Ragweed (Ambrosia trifida) in Tennessee

Published online by Cambridge University Press:  20 January 2017

Jason K. Norsworthy*
Affiliation:
Department of Crop, Soils, and Environmental Science, 1366 West Altheimer Drive, Fayetteville, AR 72704
Prashant Jha
Affiliation:
Department of Crop, Soils, and Environmental Science, 1366 West Altheimer Drive, Fayetteville, AR 72704
Lawrence E. Steckel
Affiliation:
Department of Plant Sciences, 605 Airways Blvd., Jackson, TN 38301
Robert C. Scott
Affiliation:
Department of Crop, Soils, and Environmental Science, P.O. Box 357, Lonoke, AR 72086
*
Corresponding author's E-mail: jnorswor@uark.edu.

Abstract

Seeds of a suspected glyphosate-resistant giant ragweed biotype from Lauderdale County, TN, were collected from a continuous cotton field in fall 2007 after plants were nonresponsive to multiple glyphosate applications. The objectives of this research were to (1) confirm resistance by quantifying the response of the putative resistant biotype to glyphosate compared to a susceptible biotype from a nonagricultural area, (2) quantify shikimate accumulation over time in both biotypes, and (3) determine the effectiveness of POST-applied herbicides labeled for use in cotton in controlling both biotypes at three growth stages. The susceptible biotype had a 50% lethal dose of 407 g ae/ha of glyphosate compared with 2,176 g/ha for the resistant biotype when treated at the four-node stage, a 5.3-fold level of resistance. The resistant biotype accumulated 3.3- to 9.8-fold less shikimate than the susceptible biotype at 1 to 7 d after treatment. The resistant biotype was less responsive to glyphosate as treatment was delayed past the two-node stage, much more than the susceptible biotype. Glufosinate, MSMA, and diuron controlled both biotypes by at least 90%, regardless of size at application. Prometryn, flumioxazin, carfentrazone-ethyl, fomesafen, and trifloxysulfuron controlled both biotypes by at least 89% when applied at the two-node stage, but control generally diminished with later application timings. Pyrithiobac was not effective in controlling either biotype, regardless of size at application. Hence, there are effective herbicide options for controlling glyphosate-resistant giant ragweed in cotton, and the resistant biotype does not appear to exhibit multiple resistances to other herbicides.

En un campo de algodón del condado de Lauderdale, TN, semillas de Ambrosia trifida sospechosas de ser resistentes a glifosato, fueron recolectadas en otoño de 2007, después de que las plantas no respondieron a múltiples aplicaciones de glifosato. Los objetivos de esta investigación fueron (a) confirmar resistencia a través de cuantificar la respuesta del biotipo que se cree resistente a glifosato, comparado con un biotipo susceptible de un área no agrícola, (b) cuantificar en ambos biotipos la acumulación de shikimato a través del tiempo, y (c) determinar la efectividad de la post-aplicación de herbicidas (indicados para el cultivo de algodón), en el control de ambos biotipos en tres etapas de crecimiento de la planta. El biotipo susceptible tuvo una LD (dosis letal)50 de 407 g ae/ha de glifosato comparado con los 2176 para el biotipo resistente (un nivel de resistencia 5.3 veces mayor), cuando fue tratado en la etapa de cuatro nudos. De 1 a 7 días después de la aplicación del tratamiento, el biotipo resistente acumuló de 3.3 a 9.8 veces menos shikimato que el biotipo susceptible. En la medida que la aplicación de glifosato se retrasó más allá de la etapa del segundo nudo, el biotipo resistente tuvo menor reacción al herbicida, comparado con el biotipo susceptible. Glufosinato, MSMA y diuron controlaron ambos biotipos al menos en un 90%, sin tomar en cuenta el tamaño de la planta al momento de la aplicación. Prometrina, flumioxazina, carfentrazone-etil, fomesafen y trifloxysulfuron controlaron ambos biotipos en al menos un 89%, cuando se aplicaron en la etapa de dos nudos; sin embargo, el control generalmente disminuyó con aplicaciones tardías. El pyrithiobac no fue efectivo en controlar ninguno de los biotipos, indistintamente del tamaño al momento de la aplicación. De este trabajo se desprende que en cultivos de algodón, hay opciones de herbicidas efectivos para controlar la Ambrosia trifida resistente al glifosato y que el biotipo resistente, no parece exhibir resistencia múltiple a otros herbicidas.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abul-Fatih, H. A. and Bazzaz, F. A. 1979. The biology of Ambrosia trifida L. I. Influences of species removal on the organization of plant community. New Phytol 83:813816.Google Scholar
Ashton, F. M. and Crafts, A. S. 1981. Mode of Action of Herbicides. 2nd ed. New York: J. Wiley. 224235.Google Scholar
Basset, I. J. and Crompton, C. W. 1982. The biology of Canadian weeds. 55. Ambrosia trifida L. Can. J. Plant Sci 62:10021010.Google Scholar
Baysinger, J. A. and Sims, B. D. 1991. Giant ragweed (Ambrosia trifida) interference in soybeans (Glycine max). Weed Sci 38:358362.Google Scholar
Baysinger, J. A. and Sims, B. D. 1992. Giant ragweed (Ambrosia trifida) control in soybean (Glycine max). Weed Technol 6:1318.Google Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webser, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Gerogia. Weed Sci 54:620626.Google Scholar
Gleason, H. A. and Cronquist, A. 1963. Manual of Vascular Plants. Boston: PWS. 734 p.Google Scholar
Harrison, S. K., Regnier, E. E., Schmoll, J. T., and Webb, J. E. 2001. Competition and fecundity of giant ragweed in corn. Weed Sci 49:224229.Google Scholar
Heap, I. 2009. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: July 15, 2009.Google Scholar
Henry, W. B., Shaner, D. L., and West, M. S. 2007. Shikimate accumulation in sunflower, wheat, and proso millet after glyphosate application. Weed Sci 55:15.Google Scholar
Johnson, W., Loux, M., Nordby, D., Sprague, C., Nice, G., Westhoven, A., and Stachler, J. 2006. Biology and Management of Giant Ragweed. http://www.ces.purdue.edu/extmedia/BP/GWC-12.pdf. Accessed: September 22, 2008.Google Scholar
Koger, C. H., Poston, D. H., Hayes, R. M., and Montgomery, R. F. 2004. Glyphosate-resistant horseweed (Conyza canadensis) in Mississippi. Weed Technol 18:820825.Google Scholar
Koger, C. H., Shaner, D. L., Henry, W. B., Nadler-Hassar, T., Thomas, W. E., and Wilcut, J. W. 2005. Assessment of two non-destructive assays for detecting glyphosate resistance in horseweed (Conyza canadensis). Weed Sci 53:438445.Google Scholar
Kretzmer, K., Hughes, M., Norris, A., and Sammons, R. D. 2008. Examining the effect of glyphosate treatment on shikimate pathway metabolites in different plant species. N. Cent. Weed Sci. Soc. Proc 63:44.Google Scholar
Maertens, K. D. 2003. Giant ragweed emergence, growth and interference in soybeans. . Urbana-Champaign, IL: University of Illinois. 65 p.Google Scholar
Main, C. L., Mueller, T. C., Hayes, R. M., and Wilkerson, J. B. 2004. Response of selected horseweed [Conyza canadensis (L.) Cronq.] populations to glyphosate. J. Agric. Food Chem 52:879883.Google Scholar
Miller, J. H. and Miller, K. V. 1999. Forest Plants of the Southeast. Giant Ragweed. Auburn, AL: Craftmaster. 10 p.Google Scholar
Mueller, T. C., Massey, J. H., Hayes, R. M., Main, C. L., and Stewart, C. N. Jr. 2003. Shikimate accumulates in both glyphosate-sensitive and glyphosate-resistant horseweed (Conyza canadensis L. Cronq.). J. Agric. Food Chem 51:680684.Google Scholar
Norsworthy, J. K., Griffith, G. M., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008a. Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol 22:108113.Google Scholar
Norsworthy, J. K., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008b. Response of northeast Arkansas accessions of Palmer amaranth to glyphosate. Weed Technol 22:408413.Google Scholar
Ott, E. J., Gerber, C. K., Harder, D. B., Sprague, C. L., and Johnson, W. G. 2007. Prevalence and influence of stalk boring insects on glyphosate activity on Indiana and Michigan giant ragweed (Amborsia trifida). Weed Technol 21:526531.Google Scholar
Owen, M. D. K. and Zelaya, I. A. 2007. Weed-to-Weed Gene Flow—What is the Potential for Glyphosate Resistance Movement via Interspecific Hybridization?. http://www.ncwss.org/proceed/2007/Abstracts/134.pdf. Accessed: October 15, 2009.Google Scholar
Patzoldt, W. L. and Tranel, P. J. 2002. Molecular analysis of cloransulam resistance in a population of giant ragweed. Weed Sci 50:299305.Google Scholar
Singh, B. K. and Shaner, D. L. 1998. Rapid determination of glyphosate injury to plants and identification of glyphosate-resistant plants. Weed Technol 12:527530.Google Scholar
Stachler, J. M. and Loux, M. M. 2005. Response of a giant ragweed population to glyphosate. Proc. N. Cent. Weed Sci. Soc 60:199.Google Scholar
Steckel, L. E. 2007. Giant Ragweed. University of Tennessee FACT Sheet. W119. http://www.utextension.utk.edu/publications/wfiles/W119.pdf. Accessed: September 22, 2008.Google Scholar
Steckel, L. E., Main, C. L., Ellis, A., and Mueller, T. C. 2008b. Palmer amaranth (Amaranthus palmeri S. Wats) in Tennessee has low level glyphosate resistance. Weed Technol 22:119123.Google Scholar
Steckel, L. E., Main, C. L., and Parker, G. 2008a. Giant ragweed control in cotton. Proc. Beltwide Cotton Conf 2008:2897.Google Scholar
Steckel, L. E. and Thompson, M. A. 2008. Glyphosate-resistant weed management: an extension perspective. Proc. South. Weed Sci. Soc 61:3.Google Scholar
Stills, J., Norsworthy, J. K., and Scott, R. C. 2008. Confirmation and management of glyphosate-resistant giant ragweed in Arkansas. Proc. South. Weed Sci. Soc 61:257.Google Scholar
Stoller, E. W. and Wax, L. M. 1973. Periodicity of germination and emergence of some annual weeds. Weed Sci 21:574580.Google Scholar
Thompson, W. M. and Nissen, S. J. 2000. Absorption and fate of carfentrazone-ethyl in Zea mays, Glycine max, and Abutilon theophrasti . Weed Sci 48:1519.Google Scholar
Tranel, P. J., Jiang, W., Patzoldt, W. L., and Wright, T. R. 2004. Intraspecific variability of the acetolactate synthase group. Weed Sci 52:236241.Google Scholar
Vangessel, M. M. 2001. Glyphosate-resistant horseweed from Delaware. Weed Sci 49:703705.Google Scholar
Westhoven, A. M., Davis, V. M., Gibson, K. D., Weller, S. C., and Johnson, W. G. 2008. Field presence of glyphosate-resistant horseweed (Conyza canadensis), common lambsquarters (Chenopodium album) and giant ragweed (Ambrosia trifida) biotypes with elevated tolerance to glyphosate. Weed Technol 22:544548.Google Scholar
Wichert, R. A., Bozsa, R., Talbert, R. E., and Oliver, L. R. 1992. Temperature and relative humidity effects on diphenylether herbicides. Weed Technol 6:1924.Google Scholar
Wiesbrook, M. L., Johnson, W. G., Hart, S. E., Bradley, P. R., and Wax, L. M. 2001. Comparison of weed management systems in narrow-row, glyphosate-, and glufosinate-resistant soybean (Glycine max). Weed Technol 15:122128.Google Scholar
York, A. C., Whitaker, J. R., Culpepper, A. S., and Main, C. L. 2007. Glyphosate-resistant Palmer amaranth in the southeastern United States. Proc. South. Weed Sci. Soc 60:225.Google Scholar
Zelaya, I. A. and Owen, M. D. K. 2004. Evolved resistance to acetolactate synthase–inhibiting herbicides in common sunflower (Helainthus annuus), giant ragweed (Ambrosia trifida), and shattercane (Sorghum bicolor) in Iowa. Weed Sci 52:538548.Google Scholar