Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T02:26:06.519Z Has data issue: false hasContentIssue false

Cost-Effectiveness of Glyphosate, 2,4-D, and Triclopyr, Alone and in Select Mixtures for Poison Ivy Control

Published online by Cambridge University Press:  20 January 2017

Glenn Wehtje*
Affiliation:
Department, 233 Funchess Hall, Auburn University, Auburn, AL 36849
Charles H. Gilliam
Affiliation:
Auburn University, Auburn, AL 36849
*
Corresponding author's E-mail: wehtjgr@auburn.edu

Abstract

Dermatitis from poison ivy is a significant health problem. Considerable effort is devoted to the control of this invasive and virulent weed in urban areas. Glyphosate, triclopyr, 2,4-D, a 1 : 1 mixture of glyphosate and 2,4-D, and a 9 : 1 mixture of glyphosate and triclopyr were evaluated for poison ivy control. Each of these three herbicides and two mixtures were applied at nine or ten rates, which ranged in phytotoxicity from none to death. Poison ivy plants had been propagated and container-grown. Percent control, as determined from plant fresh weight reduction, was determined at 1 and 4 mo after treatment (MAT). Data were subjected to ANOVA followed by nonlinear regression. Rates required for 95% control at 1 and 4 MAT and the associated costs were determined for each of the three herbicides and two mixtures. Acceptable control (i.e., ≥ 95%) at 1 and 4 MAT could be obtained at a much lower cost with either triclopyr or 2,4-D than with either glyphosate alone or with the two glyphosate-containing mixtures. Nonlinear regression also was used to evaluate whether the two mixtures were interactive (i.e., synergistic or antagonistic) or not (i.e., additive). Glyphosate plus triclopyr was synergistic for control at both 1 and 4 MAT. Glyphosate plus 2,4-D was synergistic for control at 4 MAT only. However, for both mixtures, synergism was only evident at rates that controlled poison ivy ≤ 80%. Both mixtures were noninteractive at rates required for acceptable control.

La dermatitis causada por Toxicodendron radican es un problema de salud importante. En áreas urbanas se realizan esfuerzos considerables para el control de esta maleza invasiva y virulenta. Se evaluó el control de T. radican con glyphosate, triclopyr, 2,4-D, una mezcla 1:1 de glyphosate y 2,4-D y una mezcla 9:1 de glyphosate y triclopyr. Cada uno de estos tres herbicidas y dos mezclas fueron aplicados a nueve o diez dosis, las cuales variaron en fitotoxicidad desde ningún daño hasta la muerte. Las plantas de T. radican habían sido propagadas y crecidas en contenedores. El porcentaje de control, determinado como la reducción en el peso fresco de la planta, fue determinado a 1 y 4 meses después del tratamiento (MAT). Los datos fueron sometidos a análisis de varianza (ANOVA) seguido de regresiones no-lineales. Las dosis requeridas para alcanzar 95% de control a 1 y 4 MAT y los costos asociados fueron determinados para cada uno de los tres herbicidas y las dos mezclas. Un nivel aceptable de control (i.e. ≥ 95%) a 1 y 4 MAT se pudo obtener con triclopyr o 2,4-D a un costo más bajo que con glyphosate solo o que con las mezclas que contenían glyphosate. Regresiones no-lineales también fueron usadas para evaluar si las dos mezclas fueron interactivas (i.e. sinérgica o antagónica) o no (i.e. aditiva). Glyphosate más triclopyr fue sinérgico para el control a 1 y 4 MAT. Glyphosate más 2,4-D fue sinérgico para el control solamente a 4 MAT. Sin embargo, para ambas mezclas, la sinergia fue solamente evidente a dosis que controlaron T. radican ≤80%. Ninguna de las mezclas fueron interactivas a las dosis requeridas para alcanzar un control aceptable.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Epstein, W. L. and Byers, V. S. 1981. Poison Oak and Poison Ivy Dermatitis: Prevention and Treatment in Forest Service Work. Missoula, MT U.S. Forest Service, Equipment Development Center. 13 p.Google Scholar
Gressel, L. and Segal, L. A. 1982. Interrelating factors controlling the rate of appearance of resistance: the outlook for the future. Pages 325347 in LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. New York, NY John Wiley and Sons.Google Scholar
Mitich, L. W. 1995. Poison-ivy/poison-oak/poison-sumac—the virulent weeds. Weed Technol. 9:653656.Google Scholar
Motulsky, H. and Christopoulos, A. 2004. Fitting Models to Biological Data Using Nonlinear Regression. New York Oxford University Press. 351 p.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.Google Scholar
Streibig, J. C. and Jensen, J. E. 2000. Actions of herbicides in mixtures. Pages 153180 in Cobb, A. H. and Kirkwood, R. C., eds. Herbicides and Their Mechanisms of Action. Boca Raton, FL CRC Press.Google Scholar
Tallarida, R. J. 2001. Drug synergism: its detection and applications. Perspect. in Pharmacol. 3:865872.Google Scholar
Wehtje, G., Gilliam, C. H., and Marble, S. C. 2010a. Interaction of prodiamine and flumioxazin for nursery weed control. Weed Technol. 24:504509.Google Scholar
Wehtje, G., Gilliam, C. H., and Marble, S. C. 2010b. Postemergence weed control with glyphosate plus flumioxazin combinations. Weed Technol. 24:356360.Google Scholar
Yonce, M. H. and Skroch, W. A. 1989. Control of selected perennial weeds with glyphosate. Weed Sci. 37:360364.Google Scholar