Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T09:35:08.977Z Has data issue: false hasContentIssue false

Development of a Soil Bioassay for Triclopyr Residues and Comparison with a Laboratory Extraction

Published online by Cambridge University Press:  20 January 2017

R. D. Ranft*
Affiliation:
Department of High Latitude Agriculture, University of Alaska Fairbanks, 321 O'Neill Building, Fairbanks, AK 99775
S. S. Seefeldt
Affiliation:
United States Department of Agriculture, Subarctic Agricultural Research Unit, 355 O'Neill Building, Fairbanks, AK 99775-7200
M. Zhang
Affiliation:
Department of High Latitude Agriculture, University of Alaska Fairbanks, 321 O'Neill Building, Fairbanks, AK 99775
D. L. Barnes
Affiliation:
Civil and Environmental Engineering, University of Alaska Fairbanks, 263 Duckering Building, Fairbanks, AK 99775-5900
*
Corresponding author's E-mail: rdranft@alaska.edu.

Abstract

The use of triclopyr for the removal of woody and broad-leaf vegetation in right-of-ways and agricultural settings has been proposed for Alaska. Triclopyr concentrations in soil after application are of concern because residual herbicide may affect growth of subsequent vegetation. In order to measure triclopyr residues in soil and determine the amount of herbicide taken up by the plant, soil bioassays were developed. Four agricultural species, turnip, lettuce, mustard, and radish, were tested to determine sensitivity to triclopyr in a 1-wk bioassay. The sensitivity (I 50) of turnip, lettuce, mustard, and radish was 0.33 ± 0.05 kg ai ha−1, 0.78 ± 0.11 kg ai ha−1, 0.78 ± 0.07 kg ai ha−1, and 0.85 ± 0.10 kg ai ha−1 (mean ± SE), respectively. Mustard was the most consistent crop in the bioassay with a midrange response to triclopyr and lowest standard deviation for germination as compared to the other species. Thus, it was used in a bioassay to determine triclopyr concentrations in a field trial. The bioassay of mustard closely matched residual amounts of triclopyr in a field trial determined by chemical extraction. Estimates of residual triclopyr concentrations using the bioassay method were sometimes less than the triclopyr concentration determined using a chemical extraction. These differences in concentrations were most evident after spring thaw when the chemical extraction determined there was enough triclopyr in the soil to reduce mustard growth over 60%, yet the bioassay measured only a 10% reduction. The chemical extraction method may have identified nonphototoxic metabolites of triclopyr to be the herbicidal triclopyr acid. These methods, when analyzed together with a dose–response curve, offer a more complete picture of triclopyr residues and the potential for carryover injury to other plant species.

El uso de triclopyr para la eliminación de la vegetación arbórea y maleza de hoja ancha de la manera correcta y en sitios agrícolas ha sido propuesto para Alaska. Las concentraciones de Triclopyr en el suelo después de la aplicación son motivo de preocupación debido a que sus residuos podrían afectar el crecimiento de la vegetación sub-secuente. Para poder medir los residuos de triclopyr en el suelo y determinar la cantidad de herbicida absorbido por la planta, se desarrollaron bioensayos de suelo. Cuatro especies agrícolas: nabo, lechuga, mostaza y rábano fueron probados para determinar la sensibilidad al triclopyr a una semana del bioensayo. La sensibilidad del nabo, lechuga, mostaza y rábano fueron I50's 0.33 Kg ± 0.05, 0.78 ± 0.11, 0.78 ± 0.07, 0.85 ± 0.10 SE kg ia/ha respectivamente. La mostaza fue el cultivo más consistente en el bioensayo con una respuesta a media dosis de ctriclopyr y la más baja desviación estándar para la germinación cuando fue comparada a otras especies. Por lo tanto se usó en un bioensayo para determinar la concentración de triclopyr en un estudio de campo. El bioensayo de la mostaza cercanamente coincidió con las cantidades residuales de triclopyr por análisis químico, en un estudio de campo determinado por extracción química. Las estimaciones de las concentraciones residuales de triclopyr usando el método de bioensayo, fueron algunas veces menores que la concentración de triclopyr determinada cuando se usa una extracción química. Estas diferencias en concentraciones fueron más evidentes después del deshielo de la primavera cuando la extracción química determinó que había suficiente triclopyr en el suelo para reducir el crecimiento de la mostaza en más del 60%, aunque el bioensayo registró solamente una reducción del 10%. El método de extracción química pudo haber identificado metabolismos no fototóxicos de triclopyr por ser un herbicida de triclopyr ácido. Estos métodos, cuando se analizaron junto con una curva de la respuesta a diferentes dosis proporcionaron una idea más completa de los residuos de triclopyr y del potencial de daño posterior a otras especies de plantas.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Cox, C. 2000. Triclopyr: herbicide fact sheet. Northwest coalition for alternatives to pesticides/NCAP. Pest Ref. 20 (4):1219.Google Scholar
Dubey, H. D. and Freeman, J. F. 1963. Bioassay of diphenamid and linuron in soil. Bot. Gaz. 124:388392.Google Scholar
Eberle, D. O. and Gerber, H. R. 1976. Comparative studies of instrumental and bioassay methods for the analysis of herbicide residues. Arch. Environ. Contam. Toxicol. 4:101118.Google Scholar
Ferris, I. G. and Haigh, B. M. 1992. Prediction of herbicide persistence and phytotoxicity of residues. Proceedings First International Weed Control Congress, Melbourne 1:193207.Google Scholar
Hamaker, J. W. and Goring, C. 1976. Turnover of pesticide residues on soil. Bound and conjugated pesticide residues. Pages 219243. In Kaufman, D. D. ed. Bound and Conjugated Pesticide Residues. ACS Symposium Series 29. Washington, DC: American Chemistry Society.Google Scholar
Jettner, R. J., Walker, S. R., Churchett, J. D., Blamey, F. P. C., Adkins, S. W., and Bell, K. 1999. Plant sensitivity to atrazine and chlorsulfuron residues in soil-free system. Weed Res. 39:287295.Google Scholar
Jotcham, J. R., Smith, D. W., and Stephenson, G. R. 1989. comparative persistence and mobility of pyridine and phenoxy herbicides in soil. Weed Technol. 3:155161.Google Scholar
Knight, C. W. and Lewis, C. E. 1986. Conservation tillage in the subarctic. Soil Tillage Res. 7:341353.Google Scholar
Lee, C. H., Oloffs, P. C., and Szeto, S. Y. 1986. Persistence, degradation, and movement of triclopyr and its ethylene glycol butyl ether in a forest soil. Agric. Food Chem. 34:10751079.Google Scholar
Lewer, P. and Owen, J. W. 1990. Selective action of the herbicide triclopyr. Pestic. Biochem. Physiol. 36:187200.Google Scholar
Mitchell, J. W. and Marth, P. C. 1946. Germination of seeds in soil containing dichlorophenoxyacetic acid. Bot. Gaz. 107:408416.Google Scholar
Mulkey, D. F. 1990. Herbicide persistence and migration along the Alaska Railroad right-of-way. . University of Alaska Fairbanks: Fairbanks, AK. 193.Google Scholar
Nelson, L. R., Ezell, A. W., and Yeiser, J. L. 2006. Imazapyr and triclopyr tank mixtures for basal bark control of woody brush in the southeastern United States. New Forest. 31:173183.Google Scholar
Newton, M., Cole, E. C., and Tinsley, I. J. 2008. Dissipation of four forest-use herbicides at high latitudes. Environ. Sci. Pollut. Res. 15:573583.Google Scholar
Norris, L. A., Montgomery, M. L., and Warren, L. E. 1987. Triclopyr persistence in western Oregon hill pastures. Bull. Environ. Contam. Toxicol. 39:134141.Google Scholar
Pink, T. 2008. Soil survey of greater Delta area, Alaska. Natural Resource Conservation Service (NRCS). http://soildatamart.nrcs.usda.gov/manuscripts/AK657/0/GreaterDelta.pdf. Accessed: August 20, 2009.Google Scholar
Ranft, R. D. 2008. Triclopyr in a silt loam soil of Interior Alaska, a comparison of methods extraction and bioassay. . University of Alaska: Fairbanks, Alaska. 80.Google Scholar
Rainbolt, C. R., Thill, D. C., and Ball, D. A. 2001. Response of rotational crops to BAY MKH 6561. Weed Technol. 15:365374.Google Scholar
Rhodes, W. J. 2008. Triclopyr attenuation in cold soils. . University of Alaska Fairbanks: Fairbanks, Alaska. 92.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.Google Scholar
Stephenson, G. R., Solomon, K. R., Bowhey, C. S., and Liber, K. 1990. Persistence, leachability, and lateral movement of triclopyr (Garlon) in selected Canadian forestry soils. Agric. Food Chem. 38:584588.Google Scholar
Thompson, D. G., Pitt, D. G., Buscarini, T. M., Staznik, B., and Thomas, D. R. 2000. Comparative fate of glyphosate and triclopyr herbicide in the forest floor and mineral soil of an Acadian forest regeneration site. Can. J. For. Res. 30:18081816.Google Scholar
Torstenssen, L. and Stark, J. 1982. Persistence of triclopyr in forest soils herbicide for brush control, residues. 23rd Swedish Weed Conference, Uppsala 23:393399.Google Scholar
Tsukioka, T., Takeshita, R., and Murakami, T. 1986. Gas chromatographic determination of triclopyr in environmental waters. The Analyst 111:145149.Google Scholar
United States Department of Agriculture 1986. Backgrounder: Conservation reserve program. Washington, DC: United States Department of Agriculture New Division.Google Scholar
Wang, W. and Freemark, K. 1995. The use of plants for environmental monitoring and assessment. Ecotox. Environ. Safety 30:289301.Google Scholar
Weaver, R. J. 1948. Contratoxification of plant growth-regulators in soil and on plants. Bot. Gaz. 109 (3):276300.Google Scholar