Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T17:42:11.368Z Has data issue: false hasContentIssue false

Different Glyphosate Susceptibility in Chloris polydactyla Accessions

Published online by Cambridge University Press:  20 January 2017

Arthur A. M. Barroso*
Affiliation:
Department of Crop Production, São Paulo University, USP, São Paulo, Brazil
Alfredo J. P. Albrecht
Affiliation:
Department of Crop Production, São Paulo University, USP, São Paulo, Brazil
Fabricia C. Dos Reis
Affiliation:
Department of Crop Production, São Paulo University, USP, São Paulo, Brazil
Henrique F. Placido
Affiliation:
Paraná Federal University, Paraná, Brazil
Roberto E. Toledo
Affiliation:
FMC Agricultural Solutions and HRAC-BR, Piracicaba, Brazil
Leandro P. Albrecht
Affiliation:
Paraná Federal University, Paraná, Brazil
Ricardo V. Filho
Affiliation:
Department of Crop Production, São Paulo University, USP, São Paulo, Brazil
*
Corresponding author's E-mail: arthuragro07@hotmail.com.

Abstract

Glyphosate is now the most widely used herbicide; after years of frequent utilization, resistant weeds were selected, mainly due to widespread adoption of glyphosate-resistant crops and no-tillage sowing system. Increasing difficulty in controlling Chloris polydactyla with glyphosate has been noticed in agricultural areas. Here, the susceptibility level of various C. polydactyla accessions from Brazil is examined. Two whole-plant studies were conducted to confirm the presence and extent of glyphosate susceptibility among accessions, which involved the application of seven glyphosate doses on four accessions. The four accessions showed different glyphosate susceptibilities. The “Matão” accession presented major tolerance for glyphosate compared to “Palotina” accessions. “Jaboticabal” plants showed an intermediary susceptibility. The resistance factor (RF) was 3.76 between the “Matão” and “Palotina” accessions. All biotypes died at 2,880 g ae ha−1 glyphosate.

Glyphosate es actualmente el herbicida más ampliamente usado. Después de años de uso frecuente, malezas resistentes fueron seleccionadas, principalmente debido a la amplia adopción de cultivos resistentes a glyphosate y de sistemas de siembra con labranza cero. En áreas agrícolas, se ha notado el incremento en la dificultad para controlar Chloris polydactyla con glyphosate. Aquí, se examinó el nivel de susceptibilidad de varias accesiones de C. polydactyla de Brasil. Dos estudios de plantas enteras fueron realizados para confirmar la presencia y la magnitud de la susceptibilidad a glyphosate entre accesiones, los cuales involucraron la aplicación de siete dosis de glyphosate sobre cuatro accesiones. Las cuatro accesiones mostraron diferentes susceptibilidades a glyphosate. La accesión “Matão” presentó una tolerancia mayor al compararse con la accesión “Palotina”. Las plantas de “Jaboticabal” mostraron una susceptibilidad intermedia. El factor de resistencia (RF) fue 3.76 entre las accesiones “Matão” y “Palotina”. Todos los biotipos murieron al ser expuestos a 2,880 g ae ha−1 de glyphosate.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Brighenti, A, Voll, E, Gazziero, DLP (2007) Chloris polydactyla (L.) Sw., a perennial Poaceae weed: emergence, seed production, and its management in Brazil. Weed Biol Manag 7:8488 Google Scholar
Carvalho, LB, Alves, PLCA, González-Torralva, F, Cruz-Hipolito, HE, Rojano-Delgado, AM, De Prado, R, Gil-Humanes, J, Barro, F, De Castro, MD (2012) Pool of resistance mechanisms to glyphosate in Digitaria insularis . J Agric Food Chem 60:615622 Google Scholar
Carvalho, LB, Hipolito, HC, Torralva, GT, Alves, PLCA, Christoffoleti, PJ, Del Padro, R (2011) Detection of sourgrass (Digitaria insularis) biotypes resistant to glyphosate in Brazil. Weed Sci 59:171176 CrossRefGoogle Scholar
Carvalho, SJP, Pereira Silva, RF, López-Ovejero, RF, Nicolai, M, Christoffoleti, PJ (2005) Growth, development and seed production of Chloris polydactyla . Planta Daninha 23:603609 Google Scholar
Duke, SO, Powles, SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64:319325 CrossRefGoogle ScholarPubMed
Duke, SO, Rimando, AM, Pace, PF, Reddy, KN, Smeda, RJ (2003). Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean. J Agr Food Chem 51:340344 Google Scholar
Dyer, WE (1994). Resistance to glyphosate. Pages 229241 in Powles, S, Holtum, J, eds. Herbicide Resistance in Plants: Biology and Biochemistry. New York: CRC Lewis Publishers Google Scholar
Gressel, J, Segel, LA (1990) Modeling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technol 4:186198 Google Scholar
Heap, I (2006). Criteria for Confirmation of the Herbicide-Resistant Weeds http://www.weedscience.org/in.asp. Accessed October 25, 2007Google Scholar
Heap, I (2014). The International Survey of Herbicide-R. http://www.weedscience.com/summary/home.aspx. Accessed February18, 2014Google Scholar
Herrmann, KM, Weaver, LM (1999) The shikimate pathway. Pages 473503 In: Jones, RL, ed. Annual Review of Plant Physiology and Plant Molecular Biology. Palo Alto, California:Non profit publisher.Google Scholar
Jasieniuk, M, Ahmad, R, Sherwood, AM, Firestone, JL, Perez-Jones, A, Lanin, WT, Mallory-Smith, C, Stednick, Z (2008) Glyphosate-resistant Italian ryegrass (Lolium multiflorum) in California: distribution, response to glyphosate, and molecular evidence for an altered target enzyme. Weed Sci 56:496502 Google Scholar
Kissmann, KG, Groth, D (2007) Plantas Infestantes e Nocivas. 3rd edn. Tomo I. São Paulo, SP: Brazil: BASF. 606 pGoogle Scholar
Knezevic, SZ, Streibig, JC, Ritz, C (2007) Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol 21:840848 CrossRefGoogle Scholar
Lorenzi, H (2006) Manual de Identificação de Plantas Daninhas: Plantio Direto e Convencional. 5th edn. Nova Odessa, Brazil: Plantarum. 339 pGoogle Scholar
Main, CL, Mueller, TC, Hayes, RM, Wilkerson, J (2004) Response of selected horseweed (Conyza canadensis [L.] Cronq.) accessions to glyphosate. J Agric Food Chem 52:879883 Google Scholar
Ng, CH, Wickneswari, R, Salmijah, S, Teng, YT, Ismail, BS (2003) Gene polymorphisms in glyphosate-resistant and -susceptible biotypes of Eleusine indica from Malaysia. Weed Res 43:108115 CrossRefGoogle Scholar
Perez-Jones, A, Park, KW, Colquhoun, J, Mallory-Smith, C, Shaner, D (2005) Identification of glyphosate-resistant Italian ryegrass (Lolium multiflorum) in Oregon. Weed Sci 53:775779 Google Scholar
Powles, SB, Lorraine-Colwill, DF, Dellow, JJ, Preston, C (1998) Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci 46:604607 Google Scholar
Powles, SB, Manalil, S, Busi, R, Renton, M (2011) Rapid evolution of herbicide resistance by low herbicide dosages. Weed Sci 59:210217 Google Scholar
Preston, C, Wakelin, AM (2008) Resistance to glyphosate from altered herbicide translocation patterns. Pest Manag Sci 64:372376 CrossRefGoogle ScholarPubMed
Ribeiro, DN, Gil, D, Cruz-Hipolito, HE, Ruiz-Santaella, JP, Christoffoleti, PJ, Vidal, RA, De Prado, R (2008). Rapid assays for detection of glyphosate-resistant Lolium spp. J Plant Dis Prot 21:9599 Google Scholar
Steckel, LE, Main, CL, Ellis, AT, Mueller, TC (2008) Palmer amaranth (Amaranthus palmeri) in Tennessee has low-level glyphosate resistance. Weed Technol 22:119123 Google Scholar
Steinrucken, HC, Amrhein, N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic-acid 3-phosphate synthase. Biochem Biophys Res Commun 94:12071212 CrossRefGoogle Scholar
Switzer, RCM (1957) The existence of 2,4-D–resistant Strains of wild carrot. Pages 315318 in Proceedings of 11th Northeast Weed Control Conference. New York Northeastern Weed Science Society Google Scholar
Teixeira, IR, Andrade, MJB, Carvalho, JG, Morais, AR, Corrêa, JBD (2000) Resposta do feijoeiro (Phaseolus vulgaris L. cv. Pérola) a diferentes densidades de semeadura e doses de nitrogênio. Ciênc Agrotecnol 24:399408 Google Scholar
Woodburn, AT (2000) Glyphosate: production, pricing and use worldwide. Pest Manag Sci 56:309312 3.0.CO;2-C>CrossRefGoogle Scholar
[WSSA] Weed Science Society of America (1998) Technology Notes. Weed Technol 2:789790 Google Scholar
[WSSA] Weed Science Society of America (2010) Common and chemical names approved by the Weed Science Society of America. Weed Sci 58:511518 Google Scholar