Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T16:26:10.820Z Has data issue: false hasContentIssue false

Differential Response of Several Carotenoid Biosynthesis Inhibitors in Mixtures with Atrazine

Published online by Cambridge University Press:  20 January 2017

Gregory R. Armel*
Affiliation:
DuPont Crop Protection, Stine Haskell Research Center, Newark, DE 19714
Patrick L. Rardon
Affiliation:
DuPont Crop Protection, Stine Haskell Research Center, Newark, DE 19714
Michael C. McComrick
Affiliation:
DuPont Crop Protection, Stine Haskell Research Center, Newark, DE 19714
Nancy M. Ferry
Affiliation:
DuPont Crop Protection, Stine Haskell Research Center, Newark, DE 19714
*
Corresponding author's E-mail: gregory.r.armel@usa.dupont.com

Abstract

Greenhouse studies were conducted in 2003 at the Stine–Haskell Research Center to determine whether herbicide inhibitors of six specific sites in the carotenoid biosynthesis pathway would elicit synergistic responses when applied postemergence (POST) in combination with the photosystem II (PSII) inhibitor atrazine. Based on data analysis with the Isobole method, synergistic responses were observed on red morningglory, common cocklebur, and giant foxtail when atrazine was applied in mixtures with the deoxy-D-xylulose-5-phosphate reductoisomerase (DOXP reductoisomerase) inhibitor fosmidomycin, the p-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor mesotrione, and the DuPont proprietary zeta-carotene desaturase (ZDS) inhibitor DFPC. Clomazone (its metabolite ketoclomazone is the actual enzyme inhibitor), an inhibitor of 1-deoxy-D-xylulose-5-phosphate synthatase (DOXP synthase), provided synergistic responses on red morningglory, but antagonistic responses on both common cocklebur and giant foxtail when applied in mixtures with atrazine. Combinations of the lycopene cyclase (LC) inhibitor, CPTA, with atrazine produced synergistic responses on both common cocklebur and giant foxtail but were antagonistic on red morningglory. Norflurazon, a phytoene desaturase (PDS) inhibitor, applied in mixtures with atrazine provided synergistic responses on red morningglory, antagonistic responses on giant foxtail, and independent responses on common cocklebur. Because carotenoids have been determined to play a key role in quenching singlet oxygen species in the chloroplast and also assist in the maintenance of the D1 protein in PSII, this might help explain the synergistic responses with atrazine observed in our studies.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abendroth, J. A., Martin, A. R., and Roeth, F. W. 2006. Plant response to combinations of mesotrione and photosystem II inhibitors. Weed Technol. 20:267274.Google Scholar
Armel, G. R., Hall, G. J., Wilson, H. P., and Cullen, N. 2005. Mesotrione plus atrazine mixtures for control of Canada thistle (Cirsium arvense). Weed Sci. 53:202211.CrossRefGoogle Scholar
Armel, G. R., Wilson, H. P., Richardson, R. R., and Hines, T. E. 2001. ZA 1296 combinations for control of grasses in corn. Weed Sci. Soc. Am. Abstr. 41:84.Google Scholar
Berenbaum, M. C. 1989. What is synergy? Pharmacological Reviews 41:93141.Google Scholar
Britton, G., Barry, P., and Young, A. J. 1989. Carotenoids and chlorophyll: herbicidal inhibition of pigment biosynthesis. Pages 5172. in Dodge, A.D. ed. Herbicides and Plant Metabolism. Cambridge, UK Cambridge University Press.Google Scholar
Buhler, D. D. 1988. Factors influencing fluorochloridone activity in no-till corn (Zea mays). Weed Sci. 36:207214.CrossRefGoogle Scholar
Cavero, J., Aibar, J., Gutierrez, M., Fernandez-Cavad, S., Sopena, J. M., Pardo, A., Suso, M. L., and Zaragoza, C. 2001. Tolerance of direct-seeded paprika pepper (Capsicum annuum) to clomazone applied preemergence. Weed Technol. 15:3035.Google Scholar
Chan, D. M., Kamireddy, B., Kim, H. B., Patel, K. M., Sharpe, P. L., Casini, M. S., Xu, M., Armel, G. R., and Stevenson, T. M. 2004. Azolecarboxamide herbicides. PCT patent Application Publication WO 2004/035545.Google Scholar
Creech, J. E., Monaco, T. A., and Evans, J. O. 2004. Photosynthetic and growth responses of Zea mays L. and four weed species following post-emergence treatments with mesotrione and atrazine. Pest Manag. Sci. 60:10791084.Google Scholar
Culpepper, A. S., York, A. C., Martin, J. L., and Corbin, F. T. 2001. Effect of insecticides on clomazone absorption, translocation, and metabolism in cotton. Weed Sci. 49:613616.CrossRefGoogle Scholar
Cunningham, F. X. and Gantt, E. 1998. Genes and enzymes of carotenoid biosynthesis in plants. Annual Rev. Plant Physiol. Plant Mol. Biol. 49:557583.Google Scholar
Fedtke, C., Depka, B., Schallner, O., Tietjen, K., Trebst, A., Wollweber, D., and Wroblowsky, H. 2001. Mode of action of new diethylamines in lycopene cyclase inhibition and in photosystem II turnover. Pest Manag. Sci. 57:278282.Google Scholar
Ferry, N. M., Stanley, B. H., and Armel, G. R. 2005. The design and analysis of biological assays of mixtures. Pages 3350. in. 2005 Conference on Applied Statistics in Agriculture Proceedings. Manhattan, KS Kansas State University. [CD-ROM.computer file].Google Scholar
Green, J. M. and Streibig, J. C. 1993. Herbicide mixtures. Pages 117134. in Streibig, J.C., Kudsk, P. eds. Herbicide Bioassays. Boca Raton, FL CRC.Google Scholar
Grichar, W. J., Besler, B. A., and Palrang, D. T. 2005. Flufenacet and isoxaflutole combinations for weed control and corn (Zea mays) tolerance. Weed Technol. 19:891896.Google Scholar
Johnson, C. J., Young, B. G., and Matthews, J. L. 2002. Effect of postemergence application rate and timing of mesotrione on corn (Zea mays) response and weed control. Weed Technol. 16:414420.Google Scholar
Kamuro, Y., Kawai, T., and Kakiuchi, T. 1991. Herbicidal methods and compositions comprising fosmidomycin. United States patent number 5,002,602.Google Scholar
Kim, J., Jung, S., Hwang, I. T., and Cho, K. Y. 1999. Characteristics of chlorophyll a fluorescence induction in cucumber cotyledons treated with diuron, norflurazon, and sulcotrione. Pestic. Biochem. Physiol. 65:7381.Google Scholar
Knezevic, S. Z., Sikkema, P. H., Tardif, F., Hamill, A. S., Chandler, K., and Swanton, C. J. 1998. Biologically effective dose and selectivity of RPA 201772 for preemergence weed control in corn (Zea mays). Weed Technol. 13:691696.Google Scholar
Kuzuyama, T., Shimizu, T., Takahashi, S., and Seto, H. 1998. Fosmidomycin, a specific inhibitor of 1-deoxy-D-xylulose-5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid biosynthesis. Tetrahedron Lett. 39:79137916.Google Scholar
Mallory-Smith, C. A. and Retzinger, E. J. 2003. Revised classification of herbicides by site of action for weed resistance management strategies. Weed Technol. 17:605619.Google Scholar
Mortensen, A. and Skibsted, L. H. 1997. Importance of carotenoid structure in radical-scavenging reactions. J. Agric. Food Chem. 45:29702977.Google Scholar
Mueller, C., Schwender, J., Zeidler, J., and Lichtenthaler, H. K. 2000. Properties and inhibition of the first two enzymes of the non-mevalonate pathway of isoprenoid biosynthesis. Biochem. Soc. Trans. 28:792793.Google Scholar
Nolte, S. A. and Young, B. G. 2002. Efficacy and economic return on investment for conventional and herbicide resistant corn (Zea mays). Weed Technol. 16:371378.Google Scholar
Norman, M. A., Liebl, R. A., and Widholm, J. M. 1990. Uptake and metabolism of tolerant-soybean and susceptible-cotton photomixotrophic cell suspension cultures. Plant Physiol. 92:777784.Google Scholar
Orme, S. and Kegley, S. 2007. Pesticide action network: pesticide database. http://www.pesticideinfo.org/Index.html. Accessed: March 21, 2007.Google Scholar
Phillip, D., Ruban, A. V., Horton, P., Asato, A., and Young, A. J. 1996. Quenching of chlorophyll fluorescence in the major light-harvesting complex of photosystem II: a systematic study of the effect of carotenoid structure. Proc. Natl. Acad. Sci. USA 93:14921497.Google Scholar
Salzman, F. P. and Renner, K. A. 1992. Response of soybean to combinations of clomazone, metribuzin, linuron, alachlor, and atrazine. Weed Technol. 6:922929.CrossRefGoogle Scholar
Smith, K. C., Namenek, R. C., Branson, J. W., and Baldwin, F. L. 2002. Antagonism with tank mixtures of new rice and cotton herbicides. Proc. South. Weed Sci. Soc. 55:39.Google Scholar
Sprague, C. L., Penner, D., and Kells, J. J. 1999. Important considerations for RPA 201772 utility. Weed Technol. 13:814820.Google Scholar
Streibig, J. C. 2003. Assessment of herbicide effects. http://www.ewrs.org/et/images/Herbicide_interaction.pdf/. Accessed: March 14, 2007.Google Scholar
Thomas, W. E., Burke, I. C., and Wilcut, J. W. 2004. Weed management in glyphosate-resistant corn with glyphosate, halosulfuron, and mesotrione. Weed Technol. 18:826834.Google Scholar
Tracewell, C. A., Vrettos, J. S., Bautista, J. A., Frank, H. A., and Brudvig, G. W. 2001. Carotenoid photooxidation in photosystem II. Archives of Biochem. and Biophys 385:6169.CrossRefGoogle ScholarPubMed
Trebst, A. and Depka, B. 1997. Role of carotene in the rapid turnover and assembly of photosystem II in Chlamydomonas reinhardtii . FEBS Lett. 400:359362.Google Scholar
W.K. Vencill, ed. 2002. Herbicide Handbook. 8th ed. Champaign, IL Weed Science Society of America. 493.Google Scholar
Westberg, D. E., Oliver, L. R., and Frans, R. E. 1989. Weed control with clomazone alone and with other herbicides. Weed Technol. 3:678685.Google Scholar
Young, A. J. 1991. The photoprotective role of carotenoids in higher plants. Physiol. Plant. 83:702708.Google Scholar