Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T14:01:28.677Z Has data issue: false hasContentIssue false

Dissipation of Clomazone, Imazapyr, and Imazapic Herbicides in Paddy Water under Two Rice Flood Management Regimes

Published online by Cambridge University Press:  24 April 2017

Fabio Schreiber*
Affiliation:
Postdoctoral Researcher and Professor, Department of Crop Protection, Federal University of Pelotas, 354 Eliseu Maciel St., 96010-900, Pelotas, Brazil
Ananda Scherner
Affiliation:
PhD Student, Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark
Joseph H. Massey
Affiliation:
Research Agronomist, Delta Water Management Research Unit, US Department of Agriculture, Agricultural Research Service, Jonesboro, AR 72401, USA
Renato Zanella
Affiliation:
Professor, Laboratory of Pesticide Residues Analyses (LARP), Federal University of Santa Maria,1000 Roraima St., 97105-900, Santa MariaBrazil
Luis A. Avila
Affiliation:
Postdoctoral Researcher and Professor, Department of Crop Protection, Federal University of Pelotas, 354 Eliseu Maciel St., 96010-900, Pelotas, Brazil
*
*Corresponding author’s E-mail: fabio.schreiber@ufpel.edu.br

Abstract

Information on the dissipation of clomazone, imazapyr, and imazapic in paddy water under different irrigation system is not available in the literature. The objective of this study was to investigate the effect of two irrigation systems (intermittent (IF) and continuous (CF) flood) on the dissipation of clomazone, imazapyr, and imazapic in paddy water. Imazapic was the least persistent herbicide in paddy water, with DT50-values of approximately 3 and 5d under CF and IF, respectively. Imazapyr required a two-fold increase in time to reach its half-life in water in contrast to imazapic, with DT50-values of approximately 6 and 11d under CF and IF, respectively. Clomazone showed the highest DT50-values, varying between 7 to 21d under CF and IF, respectively. Imazapyr and imazapic dissipation was faster under CF, while clomazone was not affected. This investigation found that the dissipation behaviors of herbicides vary under different rice irrigation regimes. Thus changes in irrigation management, as will be required to produce more rice grain with less water to avoid future scarcity, should consider impacts of flood management on herbicide persistence and environmental behavior.

Información sobre la disipación de clomazone, imazapyr, e imazapic en condiciones de inundación con diferentes sistemas de riego no está disponible en la literatura. El objetivo de este estudio fue investigar el efecto de dos sistemas de riego (inundación intermitente (IF) y continua (CF)) sobre la disipación de clomazone, imazapyr, e imazapic en el agua de inundación. Imazapic fue el herbicida menos persistente en el agua de inundación, con valores de DT50 de ca. 3y 5d con CF e IF, respectivamente. Imazapyr requirió el doble de tiempo para alcanzar su vida media en el agua en contraste con imazapic, con valores de DT50 de ca. 6y 11d con CF e IF, respectivamente. Clomazone mostró los mayores valores de DT50, los cuales variaron entre 7y 21d con CF e IF, respectivamente. Esta investigación encontró que los comportamientos de disipación de herbicidas varían en diferentes regímenes de riego en arroz. De esta forma, cambios en el manejo del riego, como los que serán requeridos para producir más grano de arroz con menos agua para evitar futura escasez, deberían considerar los impactos del manejo de la inundación sobre la persistencia y el comportamiento ambiental de los herbicidas.

Type
Weed Management-Techniques
Copyright
© Weed Science Society of America, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: F. William Simmons, University of Illinois.

References

Literature Cited

Andres, A, Machado, SLO (2004) Plantas daninhas em arroz irrigado. Pages 457546 in Gomes AS, Magalhães AM Jr, eds, Arroz irrigado no sul do Brasil. Brasília: Embrapa Informação Tecnológica Google Scholar
Avila, LA, Martini, LFD, Mezzomo, RF, Refatti, JP, Campos, R, Cezimbra, DM, Machado, SLO, Massey, JH, Carlesso, R, Marchesan, E (2015) Rice water use efficiency and yield under continuous and intermittent irrigation. Agro J 107:442448 CrossRefGoogle Scholar
Avila, LA, Massey, JH, Senseman, SA, Armbrust, KL, Lancaster, SR, McCauley, GN, Chandler, JM (2006) Imazethapyr aqueous photolysis, reaction quantum yield and hydroxyl radical rate constant. J Agric Food Chem 54:26352639 CrossRefGoogle ScholarPubMed
Bhanti, M, Taneja, A (2007) Contamination of vegetables of different seasons with organophosphorous pesticides and related health risk assessment in northern India. Chemosphere 69:6368 Google Scholar
Borojeni, BH, Salehi, F (2013) Effect of continuous and intermittent irrigation methods on rice (cv. Koohrang) yield. Arch Agro Soil Sci 59:947954 Google Scholar
Bouman, BAM, Lampayan, RM, Tuong, TP (2007) Water Management in Irrigated Rice: Coping with Water Scarcity. Los Baños, Philippines: International Rice Research Institute. 54 pGoogle Scholar
Castillo, MDP, Torstensson, L (2007) Effect of biobed composition, moisture, and temperature on the degradation of pesticides. J Agric Food Chem 55:57255733 CrossRefGoogle Scholar
Chauhan, BS, Johnson, DE (2010) The role of seed ecology in improving weed management strategies in the tropics. Adv Agro 105:221262 CrossRefGoogle Scholar
Counce, PA, Keisling, TC, Mitchell, AJ (2000) A uniform, objective, and adaptive system for expressing rice development. Crop Sci 40:436443 Google Scholar
Crestani, M, Menezes, C, Glusczak, L, Miron, DS, Spanevello, R, Silveira, A, Gonçalves, FF, Zanella, R, Loro, VL (2007) Effect of clomazone herbicide on biochemical and histological aspects of silver catfish (Rhamdia quelen) and recovery pattern. Chemosphere 67:23052311 Google Scholar
Cumming, JP, Doyle, RB, Brown, PH (2002) Clomazone dissipation in four Tasmanian topsoils. Weed Sci 50:405409 CrossRefGoogle Scholar
Donato, FF, Martins, ML, Munaretto, JS, Prestes, OD, Adaime, MB, Zanella, R (2015) Development of a multiresidue method for pesticide analysis in drinking water by solid phase extraction and determination by gas and liquid chromatography with triple quadrupole tandem mass spectrometry. J Braz Chem Soc 26:20772087 Google Scholar
Farooq, M, Kobayashi, N, Wahid, A, Ito, O, Basra, SMA (2009) Strategies for producing more rice with less water. Adv Agro 101:351388 Google Scholar
Ferhatoglu, Y, Barret, M (2006) Studies of clomazone mode of action. Pest Biochem Physiol 85:714 CrossRefGoogle Scholar
FOCUS (2006) Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration. http://esdac.jrc.ec.europa.eu/public_path/projects_data/focus/dk/docs/finalreportFOCDegKinetics.pdf. Accessed August 10, 2016Google Scholar
Gavrilescu, M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 5:497526 CrossRefGoogle Scholar
Goss, DW (1992) Screening procedure for soils and pesticides for potential water quality impacts. Weed Technol 6:701708 CrossRefGoogle Scholar
Harper, S (1994) Sorption–desorption and herbicide behavior in soil. Weed Sci 6:207225 Google Scholar
[IRGA] Instituto Riograndense do Arroz (Rio Grande do Sul State Rice Research Institute) (2016) http://www.irga.rs.gov.br/index.php?action=dados_safra_detalhesandod_dica=173. Accessed August 8, 2016Google Scholar
[IUPAC] International Union of Pure and Applied Chemistry (2016) Agrochemical Information, The A to Z of Active Ingredients. Pesticide Properties Database. http://sitem.herts.ac.uk/aeru/iupac/. Accessed August 8, 2016Google Scholar
Kim, GY, Gutierrez, J, Jeong, HC, Lee, JS, Haque, MM, Kim, PJ (2014) Effect of intermittent drainage on methane and nitrous oxide emissions under different fertilization in a temperate paddy soil during rice cultivation. J Korean Soc Appl Biol Chem 57:229236 CrossRefGoogle Scholar
Liu, Y, Wan, KY, Tao, Y, Li, ZG, Zhang, GS, Li, S, Fang, C (2013) Carbon dioxide flux from rice paddy soils in central China: effects of intermittent flooding and draining cycles. Plos One 8:562565 Google ScholarPubMed
Loux, MM, Reese, KD (1993) Effect of soil pH on adsorption and persistence of imazaquin. Weed Sci 40:490496 CrossRefGoogle Scholar
Mallipudi, NM, Stout, JS, Cunha, RA, Lee, AH (1991) Photolysis of imazapyr (AC 243997) herbicide in aqueous media. J Agric Food Chem 39:412417 Google Scholar
Mangels, GA, Ritter, A (2000) Estimated environmental concentration of imazapyr resulting from aquatic uses of Arsenal herbicide. Pesticide Registration Report #EXA 00-008 [Report Archived at Waterborne Environmental Inc.]. Leesburg, VA: American Cyanamid Co Google Scholar
Marchesan, E, Zanella, R, Avila, LA, Camargo, ER, Machado, SLO, Macedo, VRM (2007) Rice herbicide monitoring in two Brazilian rivers during the rice growing season. Sci Agric 64:131137 Google Scholar
Martini, LFD, Mezzomo, RF, Avila, LA, Massey, JH, Marchesan, E, Zanella, R, Peixoto, SC, Refatti, JP, Cassol, GV, Marques, M (2013) Imazethapyr and imazapic runoff under continuous and intermittent irrigation of paddy rice. Agric Water Manag 125:2634 Google Scholar
Massey, JH, Walker, TL, Smith, MC, Anders, MA, Avila, LA (2014) Farmer adaptation of intermittent flooding using multiple-inlet rice irrigation in Mississippi. Agric Water Manag 146:297304 Google Scholar
Mattice, JD, Skulman, BW, Norman, RJ, Gbur, EE Jr (2010) Analysis of river water for rice pesticides in eastern Arkansas from 2002 to 2008. J Soil Water Cons 65:130140 CrossRefGoogle Scholar
Miron, DS, Crestani, M, Shettinger, RM, Morsch, VM, Baldisserotto, B, Tierno, MA, Moraes, G, Vieira, VL (2005) Effects of the herbicides clomazone, quinclorac, and metsulfuronmethyl on acetylcholinesterase activity in the silver catfish (Rhamdia quelen) (Heptapteridae). Ecotoxicol Environ Saf 61:398403 Google Scholar
Oliveira, MF, Colonna, I, Prates, HT, Mantovani, EC, Gomide, RL, Oliveira, RS Jr (2004) Imazaquin herbicide sorption by an Oxisol with till and no-till management. Pesq Agrop Bras 39:787793 Google Scholar
Quayle, WC (2003) Persistence of rice pesticides in floodwaters: influence of water management. Proceedings of the 3rd International Temperate Rice Conference. Punta del Este, Uruguay: INIA. p 97Google Scholar
Quayle, WC, Oliver, DP, Zrna, S (2006) Field dissipation and environmental hazard assessment of clomazone, molinate, and thiobencarb in Australian rice culture. J Agric Food Chem 547:213220 Google Scholar
Ramezani, M, Oliver, DP, Kookana, RS, Gill, G, Preston, C (2008) Abiotic degradation (photodegradation and hydrolysis) of imidazolinone herbicides. J Environ Sci Health 43:105112 CrossRefGoogle ScholarPubMed
Reimche, GB, Machado, SLO, Zanella, R, Vicari, MC, Piccinini, F, Golombieski, JI, Reck, L (2014) Zooplankton community responses to the mixture of imazethapyr with imazapic and bispyribac-sodium herbicides under rice paddy water conditions. Ciên Rural 44:13921397 CrossRefGoogle Scholar
SANTE (2015) Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed. Safety of the Food Chain Pesticides and biocides. Almeria, Spain: European Commission Document SANTE/11945/2015Google Scholar
Santos, FM, Marchesan, E, Machado, SLO, Avila, LA, Zanella, R, Gonçalves, FF (2008) Imazethapyr and clomazone persistence in rice paddy water. Planta Daninha 26:875881 Google Scholar
Silva, DRO, Avila, LA, Agostinetto, D, Magro, TD, Oliveira, E, Zanella, R, Noldin, JAB (2009) Pesticides monitoring in surface water of rice production areas in southern Brazil. Ciên Rural 39:23832389 CrossRefGoogle Scholar
Silva, LS, Ranno, SK (2005) Liming in lowland soils and nutrient availability in soil solution after flooding. Ciên Rural 35:10541061 Google Scholar
[SOSBAI] Sociedade Sul-Brasileira de Arroz Irrigado (2014) Arroz Irrigado: Recomendações Técnicas da Pesquisa para o Sul do Brasil. Santa Maria, RS: Sociedade Sul-Brasileira de Arroz Irrigado. 192 pGoogle Scholar
Susi, HSD, Marasi, AA, Soekrasno, DJ (2016) Intermittent irrigation in system of rice intensification potential as an adaptation and mitigation option of negative impacts of rice cultivation in irrigated paddy field. http://www.rid.go.th/thaicid/_6_activity/TechnicalSession/SubTheme2/2.10-Susi_H-Dewi_AA-Marasi_DJ-Soekrasno.pdf. Accessed August 10, 2016Google Scholar
Tomco, PL, Holstege, DM, Zou, W, Tjeerdema, RS (2010) Microbial degradation of clomazone under simulated California rice field condition. J Agric Food Chem 58:36743680 CrossRefGoogle Scholar
Tomco, PL, Tjeerdema, RS (2012) Photolytic versus microbial degradation of clomazone in a flooded California rice field soil. Pest Manag Sci 68:11411147 Google Scholar
Wang, X, Wang, H, Fan, D (2006) Degradation and metabolism of imazapyr in soils under aerobic and anaerobic conditions. Int J Environ Anal Chem 86:541551 Google Scholar
Watanabe, H, Nguyen, H, Souphasay, K, Vu, SH, Phong, TK, Tournebize, J, Ishihara, S (2007) Effect of water management practice on pesticide behavior in paddy water. Agric Water Manag 88:132140 Google Scholar
Wei, LN, Wu, P, Wang, FR, Yang, H (2015) Dissipation and degradation dynamics of thifluzamide in rice field. Water Air Soil Poll 226:458463 CrossRefGoogle Scholar
Zhang, CZ, Zhang, ZY, Liu, XJ, Jiang, W, Wu, YD (2010) Dissipation and environmental fate of herbicide H-9201 in carrot plantings under field conditions. Food Chem 119:874879 Google Scholar