Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T08:41:59.349Z Has data issue: false hasContentIssue false

Effect of Biodegradable Mulch Materials on Weed Control in Processing Tomatoes

Published online by Cambridge University Press:  20 January 2017

A. Anzalone
Affiliation:
Departamento de Fitotecnia, Decanato de Agronomía. Universidad Centroccidental “Lisandro Alvarado,” Barquisimeto, Venezuela
A. Cirujeda*
Affiliation:
Unidad de Sanidad Vegetal; Centro de Investigación y Tecnología Agroalimentaria; Avda. Montañana 930, 50059 Zaragoza, Spain
J. Aibar
Affiliation:
Escuela Universitaria Politécnica Superior de Huesca, Ctra. de Zaragoza, Km 67, 22071 Huesca, Spain
G. Pardo
Affiliation:
Departamento de Ciencias Agroforestales; EUITA, Universidad de Sevilla, Carretera de Utrera Km. 1; 41013 Sevilla, Spain
C. Zaragoza
Affiliation:
Unidad de Sanidad Vegetal; Centro de Investigación y Tecnología Agroalimentaria; Avda. Montañana 930, 50059 Zaragoza, Spain
*
Corresponding author's E-mail: acirujeda@aragon.es.

Abstract

Three years of field trials have been carried out in Zaragoza, Spain, using different biodegradable mulch materials in processing tomatoes. The aim was to evaluate weed control with several biodegradable mulches as alternatives to black polyethylene (PE) mulch. The treatments were rice straw, barley straw, maize harvest residue, absinth wormwood plants, black biodegradable plastic, brown kraft paper, PE, herbicide, manual weeding, and unweeded control. Assessments focused on weeds and on crop yield. A laboratory study showed that 1 kg/m2 of organic mulch was sufficient to cover the soil for rice, barley straw, and maize harvest residue. The most abundant weed species in the field were purple nutsedge, common purslane, common lambsquarters, and large crabgrass and a change in weed composition was observed between treatments and years. Most weed species were controlled by the mulching materials except that purple nutsedge was controlled only by paper mulch. The other species were well controlled by PE and biodegradable plastic and also by some of the organic mulch treatments. Best weed control and lowest weed biomass were achieved by paper followed by PE and biodegradable plastic. The best organic mulch was rice straw and the worst weed control was from absinth wormwood. Tomato yield was highest for PE followed by paper, manual weeding, biodegradable plastic, and rice straw and was clearly related to weed control. Paper, biodegradable plastic, and rice straw are potential substitutes for PE and herbicides.

En Zaragoza (España), durante tres años se condujeron investigaciones de campo utilizando diferentes materiales biodegradables como cubiertas en el cultivo de tomate. El objetivo fue evaluar el control de la maleza con varias cubiertas biodegradables como alternativas a la cubierta de polietileno negro (PE). Los tratamientos fueron con paja de arroz, paja de cebada, residuos de la cosecha del maíz, plantas de Artemisia absinthium L., plástico negro biodegradable, papel de estraza, PE, herbicida, deshierbe manual y con un control sin deshierbe. Las evaluaciones se centraron en la maleza y en rendimiento del cultivo. Un estudio de laboratorio mostró que 1 kg/m2 de cubierta orgánica era suficiente para recubrir el suelo en el caso del arroz, la paja de cebada y los residuos de la cosecha del maíz. En el campo, las especies de maleza más abundantes fueron Cyperus rotundus, Chenopidium album, Portulaca oleracea y Digitaria sanguinalis. Se observó un cambio en la composición de la maleza entre los tratamientos y entre años. La mayoría de las especies de maleza fueron controladas por las cubiertas evaluadas, con excepción de Cyperus rotundus, que fue controlada únicamente con la cubierta de papel. Las otras especies fueron bien controladas por el PE y el plástico biodegradable y también por algunos tratamientos con cubierta orgánica. El mejor control y la menor biomasa de maleza, fueron logrados con la aplicación de papel, seguido por el PE y el plástico biodegradable. La mejor cubierta orgánica fue la paja de arroz y el peor control de maleza fue el que resultó del uso de la Artemisia. El rendimiento de tomate claramente está relacionado con el control de maleza, y este fue mayor cuando se usó el PE, seguido por el papel, el deshierbe manual, el plástico biodegradable y la paja de arroz. El papel, el plástico biodegradable y la paja de arroz son substitutos potenciales para el PE y los herbicidas.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abdul-Baki, A., Teasdale, J. R., Goth, R. W., and Haynes, K. 2002. Marketable yield of fresh-market tomatoes grown in plastic and hairy vetch mulches. HortScience 37:878881.Google Scholar
Alcántara, C., Jiménez, A., and Balsera, A. 2007. Manejo ecológico de hierbas. Influencia sobre la producción de tomate y pimiento. Phytoma España 194:4448.Google Scholar
Anderson, D., Garisto, M., Bourrut, J., Schonbeck, M., Jaye, R., Wurzberger, A., and De Gregorio, R. 1995. Evaluation of a paper mulch made from recycled materials as an alternative to plastic film mulch for vegetables. J. Sustain. Agric 7:3961.CrossRefGoogle Scholar
Anzalone, A. 2008. Evaluación de alternativas de uso del polietileno como cubierta del suelo para el manejo de malas hierbas y otros aspectos agronómicos en el cultivo del tomate (Lycopersicon esculentum P. Mill.) en España y Venezuela. Ph.D dissertation. Zaragoza, Spain: University of Zaragoza. 153.Google Scholar
Bara, S., Zaragoza, C., and Valderrábano, J. 1999. Efecto alelopático y antihelmíntico de Artemisia absinthium . Pages 223240. in. Proceedings of the 7th Spanish Weed Science Congress. Logroño, Spain: Spanish Weed Science Society.Google Scholar
Bowley, S. R. 1999. A Hitchhiker's Guide to Statistics in Plant Biology. Guelph, Ontario, Canada: Any Old Subject Books. 250.Google Scholar
Cheshire, M., Bedrock, C., Williams, B., Chapman, S., Solntseva, I., and Thomsen, I. 1999. The immobilization of nitrogen by straw decomposition in soil. Eur. J. Soil Sci 50:320341.Google Scholar
Chung, I., Ahn, J., and Yun, S. 2001. Identification of allelopathic compounds from rice (Oryza sativa L.) straw and their biological activity. Can. J. Plant Sci 81:815819.CrossRefGoogle Scholar
Cirujeda, A., Aibar, J., Zaragoza, C., Anzalone, A., Gutiérrez, M., Fernández-Cavada, S., Pardo, A., Suso, M. L., Royo, A., Martín, L., Moreno, M. M., Moreno, A., Meco, R., Lahoz, I., and Macua, J. I. 2007. Evaluación de acolchados para el control de la flora arvense en un cultivo de tomate. Pages 217221. in. Proceedings of the 2007 Spanish Weed Science Congress. Albacete, Spain: Spanish Weed Science Society.Google Scholar
Creamer, N., Bennett, M., Stinner, B., and Cardina, J. 1996. A comparison of tour processing tomato production system differing in cover crop and chemical inputs. J. Am. Soc. Hortic. Sci 121:559568.CrossRefGoogle Scholar
Delabays, N. 2005. Allelopathy: from field evidences to agronomic utilizations. in. Proceedings of the 13th European Weed Research Society Symposium. Bari, Italy: European Weed Research Society.Google Scholar
Díaz-Pérez, J. C., Randle, W. M., Boyhan, G., Walcott, R. W., Giddings, D., Bertrand, D., Sanders, H. F., and Gitatis, R. D. 2004. Effects of mulch and irrigation system on sweet onion: i. bolting, plant growth, and bulb yield and quality. J. Am. Soc. Hortic. Sci 129:218224.Google Scholar
Erenstein, O. 2002. Crop residue mulching in tropical and semi-tropical countries: an evaluation of residue availability and other technological implications (review). Soil Tillage Res 67:115133.Google Scholar
Ghosh, P., Dayal, D., Bandyopadhyay, K., and Mohanty, M. 2006. Evaluation of straw and polythene mulch for enhancing productivity of irrigated summer groundnut. Field Crops Res 99:7686.CrossRefGoogle Scholar
Gutiérrez, M., Bruna, P., and Vallés, M. 2005. El cultivo de tomate de industria en Aragón. Informaciones Técnicas del Departamento de Agricultura y Alimentación del Gobierno de Aragón 163:14.Google Scholar
Gutiérrez, M., Villa, F., Cotrina, F., Albalat, A., Macua, I., Romero, J., Sanz, J., Uribarri, A., Sábada, S., Aguado, G., and Del Castillo, J. 2003. Utilización de los plásticos en la horticultura del valle medio del Ebro. Dirección General de Tecnología Agraria. Informaciones Técnicas del Departamento de Agricultura y Alimentación del Gobierno de Aragón 130:119.Google Scholar
Harrington, K. and Bedford, T. 2004. Control of weeds by paper mulch in vegetables and trees. New Zealand Plant Protection 57:3740.CrossRefGoogle Scholar
Inderjit, , Rawat, D. S., and Foy, C. 2004. Multifaceted approach to determine rice straw phytotoxicity. Can. J. Bot. (Rev.) 82:168176.Google Scholar
Juteau, F., Masotti, V., Viano, J., and Bessiere, J. 2005. Chemical variation in the oil of Artemisia verlotiorum Lamotte of French origin harvested at a vegetative stage and during flowering. J. Essent. Oil Res 17:254256.Google Scholar
Kristiansen, P., Sindel, B., and Jessop, R. 2003. Agronomic and economic evaluation of weed management methods in organic herb and vegetable production systems. Pages 14. in. Proceedings of the 11th Australian Agronomy Conference. Geelong, Victoria, Australia Australian Society of Agronomy.Google Scholar
Le Moine, B. 2003. Mulch films: towards a new generation of rapidly decaying plastics. Plasticulture 122:97103.Google Scholar
López, J. 2003. Respuesta del tomate de industria a los plásticos biodegradables. Vida Rural Febrero 2003:4649.Google Scholar
Luxhoi, J., Elsgaard, L., Thomsen, I. K., and Jensen, L. S. 2007. Effects of long-term annual inputs of straw and organic manure on plant N uptake and soil N fluxes. Soil Use Manag 23:368373.Google Scholar
Macua, J. I., Lahoz, I., Garnica, J., Calvillo, S., Díaz, E., and Santos, A. 2005. Utilización de acolchados plásticos en tomate y pimiento. Navarra Agraria 151:513.Google Scholar
Macua, J. I., Lahoz, I., Garnica, J., Calvillo, S., Zúñiga, J., and Santos, A. 2007. Tomate de industria 2006. Navarra Agraria 160:922.Google Scholar
Magurran, A. E. 1987. Ecological Diversity and its Measurements. Princeton, NJ: Princeton University Press. 178.Google Scholar
[MAPA] Ministerio de Agricultura, Pesca y Alimentación 2008a. Anuario de Estadística Agroalimentaria 2007. http://www.mapa.es/es/estadistica/pags/anuario/2007/indice.asp. Accessed: July 29, 2008.Google Scholar
MAPA 2008b. Registro de Productos Fitosanitarios. http://www.mapa.es/es/agricultura/pags/fitos/fitos.asp. Accessed: July 29, 2008.Google Scholar
Martín, L. and Pelacho, A. 2004. Los acolchados biodegradables como alternativa a los acolchados de papel y polietileno en un sistema de producción de tomate. Pages 237238. in. Proceedings of the 6th Congress of the Spanish Organic Agriculture Society. Almería, Spain: Spanish Organic Agriculture Society.Google Scholar
Masin, R., Zuin, M. C., Otto, S., and Zanin, G. 2006. Seed longevity and dormancy or four summer annual grass weeds in turf. Weed Res 46:362370.Google Scholar
[MMA] Ministerio de Medio Ambiente 2009. Borrador del I Plan Nacional de Residuos de Plásticos de Uso Agrario http://www.mma.es/secciones/calidad_contaminacion/residuos/planificacion_residuos/pdf/borradorpnir_anexo11.pdf. Accessed: August 4, 2009.Google Scholar
Monks, C. D., Monks, D. W., Basden, T., Selders, A., Poland, S., and Rayburn, E. 1997. Soil temperature, soil moisture, weed control, and tomato (Lycopersicon esculentum) response to mulching. Weed Technol 11:561566.Google Scholar
Moreno, M. M., Moreno, A., Mancebo, I., Meco, R., and López, J. 2004. Comparación de diferentes materiales de acolchado en cultivo de tomate. Pages 243. in. Proceedings of the 6th Congress of the Spanish Organic Agriculture Society. Almería, Spain: Spanish Organic Agriculture Society.Google Scholar
Munguía, J., Quezada, R., De La Rosa, M., and Cedeño, B. 2000. Effect of plastic mulch on growth of melon, Cucumis melo L., “Laguna” hybrid. Phyton 69:3744.Google Scholar
Pardo, G., Anzalone, A., Cirujeda, A., Fernández-Cavada, S., Aibar, J., and Zaragoza, C. 2005. Different weed control systems in tomato. in. Proceedings of the 13th European Weed Research Society Symposium. Bari, Italy: European Weed Research Society.Google Scholar
Peachey, R. E., William, R. D., and Mallory-Smith, C. 2004. Effect of no-till or conventional planting and cover crop residues on weed emergence in vegetable row crop. Weed Technol 18:10231030.Google Scholar
Pérez, S. 2008. Evaluación de cubiertas biodegradables y restos vegetales para el control de malas hierbas en tomate de industria. M.Sc. Project for Agriculture Engineer. Zaragoza, Spain: Escuela Politécnica Superior de Huesca, Universidad de Zaragoza. 86.Google Scholar
Phuong, N., Thuy, N., Hoi, T., Thai, T., Muselli, A., Bighelli, A., Castola, V., and Casanova, J. 2004. Artemisia vulgaris L. from Vietnam: chemical variability and composition of the oil along the vegetative life of plant. J. Essent. Oil Res 16:358361.Google Scholar
Quezada, M., Munguía, J., De La Rosa, M., Sánchez, S., and Rodríguez, J. 2000. Comportamiento de películas plásticas fotodegradables para acolchado de suelo en la producción de tomates. Phyton 68:1120.Google Scholar
Radics, L. and Székelyné, E. 2002. Comparision of different mulching methods for weed control in organic green bean and tomato. Pages 192204. in. Proceedings of the 5th European Weed Research Society Workshop on Physical Weed Control. Pisa, Italy: European Weed Research Society.Google Scholar
Radics, L., Székelyné, E., Pustztai, P., and Horvath, K. 2006. Role of mulching in weed control of organic tomato. J. Plant Dis. Prot 20:18.Google Scholar
Ramalan, A. and Nwokeocha, C. 2000. Effects of furrow irrigation methods, mulching and soil water suction on the growth, yield and water use efficiency of tomato in the Nigerian Savanna. Agric. Water Manag 45:317330.CrossRefGoogle Scholar
Reddy, K., Zablotowicz, R., Locke, M., and Koger, C. 2003. Cover crop, tillage and herbicide effects on weeds, soil properties, microbial populations and soybean yield. Weed Sci 51:987994.Google Scholar
Runham, S. 1998. Clear edge for paper mulch. Grower 129:2122.Google Scholar
Scott, G. 2005. Biodegradable plastics in agriculture. Pages 120. in Smith Woodhead, R. ed. Biodegradable Polymers for Industrial Applications. London, UK: R. Smith Woodhead.Google Scholar
Sharma, S. N. and Prasad, R. 2008. Effect of crop-residue management on the production and agronomic nitrogen efficiency in a rice–wheat cropping system. J. Plant Nutr. Soil Sci 171:295302.Google Scholar
Teasdale, J. 2003. Principles and practices of using cover crops in weed management systems. Pages 169178. in Labrada, R. ed. Weed Management for Developing Countries. Addendum 1. Rome, Italy: Food and Agriculture Organization of the United Nations. FAO Plant Production and Protection paper.Google Scholar
Teasdale, J., Beste, C., and Potts, W. 1991. Response of weeds to tillage and cover crops residue. Weed Sci 39:195199.Google Scholar
Tiwari, K. N., Mal, P. K., Singh, R. M., and Chattopadhyay, A. 1998. Response of okra (Abelmoschus esulentus (L.) Moench.) to drip irrigation under mulch and non-mulch conditions. Agric. Water Manag 38:91102.Google Scholar
Tu, M., Hurd, C., and Randall, J. 2001. Weed Control Methods Handbook: Tools and Techniques for Use in Natural Areas. The Nature Conservancy, Wildland Invasive Species Team. http://tncweeds.ucdavis.edu/products/handbook/methods-handbook.pdf. Accessed: March 11, 2008.Google Scholar
Weaver, S. E. and Tan, C. S. 1983. Critical period of weed interference in transplanted tomatoes (Lycopersicon esculentum): growth analysis. Weed Sci 31:476481.Google Scholar
Woldetsadik, K., Gertsson, U., and Ascard, J. 2003. Response of shallots to mulching and nitrogen fertilization. HortScience 38:217221.Google Scholar
Yadvinder-Singh, , Bijay-Singh, , Ladha, J. K., Khind, C. S., Khera, T. S., and Bueno, C. S. 2004. Effects of residue decomposition on productivity and soil fertility in rice–wheat rotation. Soil Sci. Soc. Am. J. 68:854864.Google Scholar