Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T22:31:03.587Z Has data issue: false hasContentIssue false

The Effect of Cations and Ammonium Sulfate on the Efficacy of Dicamba and 2,4-D

Published online by Cambridge University Press:  20 January 2017

Jared M. Roskamp
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
Gurinderbir S. Chahal
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
William G. Johnson*
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
*
Corresponding author's E-mail: wgj@purdue.edu

Abstract

Dicamba or 2,4-D will be used POST for the control of weeds in soybean when dicamba- or 2,4-D-resistant soybean are commercialized. The active ingredients of both herbicides are weak acids in solution and may bind to cations present from hard water used as herbicide carrier or from foliar fertilizers added to spray solutions. The objectives of this research were (1) to determine if the efficacy of dicamba or 2,4-D are influenced by divalent cations, namely calcium (Ca), magnesium (Mg), manganese (Mn), and zinc (Zn), in the spray solution, and (2) to determine if adding ammonium sulfate (AMS) to the spray solution can overcome antagonism. The factorial study included five cation solutions (deionized water [dH2O], Ca at 590 mg L−1, Mg at 630 mg L−1, Mn at 4.97 L ha−1, and Zn at 2.33 L ha−1), two herbicide treatments (dicamba or 2,4-D), and two water conditioner treatments (without or with AMS at 20.37 g L−1). Treatments were applied to common lambsquarters, horseweed, and redroot pigweed. Control of horseweed and redroot pigweed increased when AMS was added to the 2,4-D treatments, irrespective of cation solution. Control of common lambsquarters was increased when AMS was added to 2,4-D for only the Ca and Mn cation solution. In contrast to the results obtained with 2,4-D, control of horseweed with dicamba was not influenced by cation solution. Tank-mixing AMS with dicamba increased control of both redroot pigweed and common lambsquarters in the dH2O, Mg, and Mn solutions.

Dicamba o 2,4-D serán usados POST para el control de malezas en soya cuando se comercialice la soya resistente a dicamba o 2,4-D. Los ingredientes activos de ambos herbicidas son ácidos débiles en solución los cuales pueden adherirse a cationes provenientes de aguas pesadas usadas como medio de acarreo del herbicida o de fertilizantes foliares agregados a las soluciones de aplicación. Los objetivos de esta investigación fueron (1) determinar si la eficacia de dicamba o 2,4-D es influenciada por cationes divalentes, específicamente calcium (Ca), magnesium (Mg), manganese (Mn), y zinc (Zn), en la solución de aplicación, y (2) determinar si agregar ammonium sulfate (AMS) a la solución de aplicación puede eliminar los antagonismos. El estudio factorial incluyó cinco soluciones de cationes (agua desionizada [dH2O], Ca a 590 mg L−1, Mg a 630 mg L−1, Mn a 4.97 L ha−1, y Zn a 2.33 L ha−1), dos tratamientos de herbicidas (dicamba o 2,4-D), y dos tratamientos de acondicionamiento de aguas (sin o con AMS a 20.37 g L−1). Los tratamientos fueron aplicados a Chenopodium album, Conyza canadensis y Amaranthus retroflexus. El control de C. canadensis y de A. retroflexus incrementó cuando AMS fue agregado a los tratamientos de 2,4-D sin importar la solución de cationes. El control de C. album se incrementó cuando AMS fue agregado a 2,4-D pero solamente para las soluciones de los cationes Ca y Mn. En contraste con los resultados obtenidos con 2,4-D, el control de C. canadensis con dicamba no se vio influenciado por la solución de cationes. El mezclar en tanque AMS con dicamba incrementó el control de A. retroflexus y C. album en dH2O y soluciones de Mg y Mn.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bailey, W. A., Poston, D. H., Wilson, H. P., and Hines, T. E. 2002. Glyphosate interactions with manganese. Weed Technol. 16 :792799.Google Scholar
Bechert, C. H. and Heckard, J. M. 1966. Indiana Ground Water. http://www.in.gov/dnr/water/files/GroundWaterInIN.pdf. Accessed: May 20, 2012.Google Scholar
Bernards, M. L., Thelen, K. D., and Penner, D. 2005a. Glyphosate efficacy is antagonized by manganese. Weed Technol. 19 :2734.Google Scholar
Bernards, M. L., Thelen, K. D., Penner, D., Muthukumaran, R. B., and McCracken, J. L. 2005b. Glyphosate interaction with manganese in tank mixtures and its effect on glyphosate absorption and translocation. Weed Sci. 53 :787794.Google Scholar
Buhler, D. D. and Burnside, O. C. 1983. Effect of water quality, carrier volume, and acid on glyphosate phytotoxicity. Weed Sci. 31 :163169.Google Scholar
Chahal, G., Roskamp, J., Legleiter, T., and Johnson, W. G. 2012a. The influence of spray water quality on herbicide efficacy. Purdue University Extension. Available at http://www3.ag.purdue.edu/btny/weedscience/documents/Water_Quality.pdf. Accessed June 29, 2012.Google Scholar
Chahal, G. S., Jordan, D. L., Burton, J. D., Danehower, D., York, A. C., Eure, P. M., and Clewis, B. 2012b. Influence of water quality and coapplied agrochemicals on efficacy of glyphosate. Weed Technol. 26 :167176.Google Scholar
Chahal, G. S., Jordan, D. L., Shew, B. B., Brandenburg, R. L., York, A. C., Burton, J. D., and Danehower, D. 2012c. Interactions of agrochemicals applied to peanut. Part 1: Effects on herbicides. Crop Prot. 40 : 134142.Google Scholar
Costa, J. and Appleby, A. P. 1986. Effects of ammonium sulphate on leaf growth inhibition by glyphosate in Cyperus esculentus L. Crop Prot. 5 :314318.Google Scholar
Dowler, C. C. 1969. A cucumber bioassay test for the soil residues of certain herbicides. Weed Sci. 17 :309310.Google Scholar
Fielding, R. J. and Stoller, E. W. 1990. Effects of additives on efficacy, uptake, and translocation of chlorimuron ethyl ester. Weed Technol. 4 :264271.Google Scholar
Gettier, S. W., Martens, D. C., and Brumback, T. B. 1984. Timing of foliar manganese application for correction of manganese deficiency in soybean. Agron. J. 77 :627630.Google Scholar
Griffin, J. L. 2009. Water Quality Effects on Pesticides. http://www.laagcon.org/presentations/2009/WaterQualityEffects2009.pdf. Accessed: April 22, 2012.Google Scholar
Gronwald, J. W., Jourdan, S. W., Wyse, D. L., Somers, D. A., and Magnusson, M. U. 1993. Effect of ammonium sulfate on absorption of imazethapyr by quackgrass (Elytrigia repens) and maize (Zea mays) cell suspension cultures. Weed Sci. 41 :325334.Google Scholar
Hall, G. J., Hart, C. A., and Jones, C. A. 2000. Plants as sources of cations antagonistic to glyphosate activity. Pest Manag. Sci. 56 :351358.Google Scholar
Hocombe, S. D. 1961. Simple experiments on the greenhouse germination of some east African weed species. Miscellaneous Report No. 285. Arusha, Tanzania : Colonial Pesticides Research Unit. 8 p.Google Scholar
[INDR] Indiana Department of Natural Resources. 1999. Ambient Ground Water Chemistry. http://www.in.gov.dnr.water.5246.htm. Accessed: March 15, 2011.Google Scholar
Kent, L. M., Wills, G. D., and Shaw, D. R. 1991. Influence of ammonium sulfate, imazapyr, temperature, and relative humidity on the absorption and translocation of imazethapyr. Weed Sci. 39 :412416.Google Scholar
Lloyd, O. B. and Lyke, W. L. 1995. U.S. Geological Survey—Ground Water Atlas of the United States (IL, IN, KY, OH, TN). http://pubs.usgs.gov.ha.ha730/ch_k/K-text1.html#silurian. Accessed: March 15, 2011.Google Scholar
McMullan, P. M. 2000. Utility adjuvants. Weed Technol. 14 :792797.Google Scholar
Mueller, T. C., Main, C. L., Thompson, M. A., and Steckel, L. E. 2006. Comparison of glyphosate salts (isopropylamine, diammonium, and potassium) and calcium and magnesium concentrations on the control of various weeds. Weed Technol. 20 :164171.Google Scholar
Nalewaja, J. D. and Matysiak, R. 1991. Salt antagonism of glyphosate. Weed Sci. 39 :622628.Google Scholar
Nalewaja, J. D. and Matysiak, R. 1993a. Influence of diammonium sulfate and other salts on glyphosate phytotoxicity. Pestic. Sci. 39 :7784.Google Scholar
Nalewaja, J. D. and Matysiak, R. 1993b. Spray carrier salts affect herbicide toxicity to kochia (Kochia scoparia). Weed Technol. 7 :154158.Google Scholar
Nalewaja, J. D., Woznica, Z., and Matysiak, R. 1991. 2,4-D amine antagonism by salts. Weed Technol. 5 :873880.Google Scholar
O'Sullivan, P. A., O'Donovan, J. T., and Hamman, W. M. 1981. Influence of non-ionic surfactants, ammonium sulfate, and nozzle effects on glyphosate efficacy. Can. J. Plant Sci. 61 :391400.Google Scholar
Pline, W. A., Wu, J., and Kriton, K. H. 1999. Absorption, translocation, and metabolism of glufosinate in five weed species as influenced by ammonium sulfate and pelargonic acid. Weed Sci. 47 :636643.Google Scholar
Ramsdale, B. K., Messersmith, C. G., and Nalewaja, J. D. 2003. Spray volume, formulation, ammonium sulfate, and nozzle effects on glyphosate efficacy. Weed Technol. 17 :589598.Google Scholar
Sandberg, C. L., Meggitt, W. F., and Penner, D. 1978. Effect of diluents volume and calcium on glyphosate phytotoxicity. Weed Sci. 26 :476479.Google Scholar
Scroggs, D. M., Miller, D. K., Stewart, A. M., Leonard, B. R., Griffin, J. L., and Blouin, D. C. 2009. Weed response to foliar coapplications of glyphosate and zinc sulfate. Weed Technol. 23 :171174.Google Scholar
Shea, P. J. and Tupy, D. R. 1984. Reversal of cation-induced reduction in glyphosate activity with EDTA. Weed Sci. 32 :802806.Google Scholar
Stahlman, P. W. and Phillips, W. M. 1979. Effects of water quality and spray volume on glyphosate phytotoxicity. Weed Sci. 27 :3841.Google Scholar
Subramaniam, V. and Hoggard, P. E. 1988. Metal complexes of glyphosate. J. Agric. Food Chem. 336 :13261329.Google Scholar
Teixeira, I. R., Borém, A., de A. Araújo, G. A., and Fontes, R. L. F. 2004. Manganese and zinc leaf application on common bean grown on a “Cerrado” soil. Scientia Agricola 61 :7781.Google Scholar
Thelen, K. D., Jackson, E. P., and Penner, D. 1995. The basis for the hard-water antagonism of glyphosate activity. Weed Sci. 43 :541548.Google Scholar
Wanamarta, G., Penner, D., and Kells, J. J. 1989. The basis of bentazon antagonism on sethoxydim absorption and activity. Weed Sci. 37 :400404.Google Scholar
Wilson, B. J. and Nishimoto, R. K. 1975. Ammonium sulfate enhancement of picloram activity and absorption. Weed Sci. 23 :289296.Google Scholar
Woznica, Z., Nalewaja, J. D., Messersmith, C. G., and Milkowski, P. 2003. Quinclorac efficacy as affected by adjuvants and spray carrier water. Weed Technol. 17 :582588.Google Scholar