Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T14:47:10.840Z Has data issue: false hasContentIssue false

Effect of Nozzle Selection and Spray Volume on Droplet Size and Efficacy of Engenia Tank-Mix Combinations

Published online by Cambridge University Press:  20 January 2017

Christopher J. Meyer*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Greg R. Kruger
Affiliation:
University of Nebraska-Lincoln, North Platte, NE 69101
Tom L. Barber
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
*
Corresponding author's E-mail: cjmeyer@uark.edu.

Abstract

Sprayer applicator-controlled variables, such as nozzle selection and spray volume, will become increasingly important for making labeled POST applications of dicamba in next-generation cropping systems. A field experiment was conducted in 2013 and 2014 at the Northeast Research and Extension Center in Keiser, AR. Tank mixtures of Engenia (a new form of dicamba), glyphosate, glufosinate, and S-metolachlor were applied with TeeJet AIXR, AITTJ60, and TTI nozzles. Two nozzle sizes, 11003 and 11006, were used to vary spray volume from 94 L ha−1 to 187 L ha−1, respectively. For barnyardgrass, a significant decrease in control was observed when spray volume was reduced for glyphosate + dicamba in 2013. In 2014, an overall decrease in control was observed for the TTI nozzle when spray volume was reduced to 94 L ha−1, averaged across all herbicide treatments. The addition of the product S-metolachlor to glyphosate + glufosinate + dicamba significantly reduced the droplet spectra for all nozzle types. For example, adding S-metolachlor into the tank-mix decreased the volume median diameter (Dv50) for the TTI nozzle at 187 L ha−1 spray volume from 789 μm to 570 μm. The results from this research demonstrate that using low spray volume and coarser nozzles could reduce efficacy of the herbicides on the weed species evaluated. Nozzle selection and spray volume have key roles in maximizing efficacy of POST applications in dicamba-resistant crops. Additionally, evaluating droplet spectra of potential dicamba-containing tank-mixtures is critical for producing the desired droplet size to minimize off-target movement.

Las variables controladas por el aplicador, tales como la selección de la boquilla y el volumen de aspersión, serán cada vez más importantes para realizar aplicaciones POST de dicamba según la etiqueta, en los sistemas de cultivos de siguiente generación. En 2013 y 2014, se realizó un experimento de campo en el Centro de Investigación y Extensión del Noreste, en Keiser, Arkansas. Mezclas en tanque de Engenia (una nueva forma de dicamba), glyphosate, glufosinate, y S-metolachlor fueron aplicadas con boquillas TeeJet AIXR, AITTJ60, y TTI. Dos tamaños de boquillas, 11003 y 11006, fueron usados para variar el volumen de aspersión de 94 L ha−1 a 187 L ha−1, respectivamente. En el caso de Echinochloa crus-galli, se observó un a disminución significativa de su control cuando se redujo el volumen de aspersión con glyphosate + dicamba, en 2013. En 2014, una disminución generalizada en el control fue observada con la boquilla TTI cuando el volumen de aspersión se redujo a 94 L ha−1, al promediarse todos los tratamientos de herbicidas. La adición del producto S-metolachlor a glyphosate + glufosinate + dicamba redujo significativamente el espectro de gota en todos los tipos de boquillas. Por ejemplo, el agregar S-metolachlor a la mezcla en tanque disminuyó el diámetro de volumen medio (Dv50) para la boquilla TTI a 187 L ha−1 de volumen de aspersión de 789 μm a 570 μm. Los resultados de esta investigación demuestran que el usar bajos volumen de aspersión y boquillas de gota más grande podría reducir la eficacia de los herbicidas en las especies evaluadas. La selección de boquilla y de volumen de aspersión tiene un papel clave para maximizar la eficacia de aplicaciones POST en cultivos resistentes a dicamba. Adicionalmente, el evaluar el espectro de gota de mezclas en tanque que contengan dicamba es crítico para producir el tamaño de gota deseado y así minimizar el movimiento a lugares no deseados.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate editor for this paper: Lawrence Steckel, University of Tennessee

References

Literature Cited

Bagavathiannan, MV, Norsworthy, JK (2013) Occurrence of arable weeds in roadside habitats: implications for herbicide resistance management. Page 163 in Proceedings of the 53rd Annual Weed Science Society of America. Lawrence, KS: Weed Science Society of America Google Scholar
Dombrowski, N, Hasson, D, Ward, DE (1960) Some aspects of liquid flow through fan spray nozzles. Chem Eng Sci 12:3550 Google Scholar
Dombrowski, N, Johns, WR (1963) The aerodynamic instability and disintegration of viscous liquid sheets. Chem Eng Sci 18:203214 Google Scholar
Etheridge, RE, Hart, WE, Hayes, RM, Mueller, TC (2001) Effect of Venturi-type nozzles and application volume on postemergence herbicide efficacy. Weed Technol 15:7580 Google Scholar
Heap, I (2015) International Survey of Herbicide Resistant Weeds. http://www.weedscience.com/summary/home.aspx. Accessed February 3, 2015Google Scholar
Hoffmann, WC, Hewitt, AJ (2005) Comparison of three imaging systems for water-sensitive papers. Appl Eng Agric 21:961964 Google Scholar
Knoche, M (1994) Effect of droplet size and carrier volume on performance of foliage-applied herbicides. Crop Prot 13:163178 Google Scholar
McKinlay, KS, Ashford, R, Ford, RJ (1974) Effects of drop size, spray volume, and dosage on paraquat toxicity. Weed Sci 22:3134 Google Scholar
Mueller, TC, Womac, AR (1997) Effect of formulation and nozzle type on droplet size with isopropylamine and trimesium salts of glyphosate. Weed Technol 11:639643 Google Scholar
Norsworthy, JK, Burgos, NR, Oliver, LR (2001) Differences in weed tolerance to glyphosate involve different mechanisms. Weed Technol 15:725731 Google Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60(suppl 1):3162 Google Scholar
Nuyttens, D, Baetens, K, De Schampheleire, M, Sonck, B (2007) Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst Eng 97:333345 Google Scholar
Ramsdale, BK, Messersmith, CG (2001) Nozzle, spray volume, and adjuvant effects on carfentrazone and imazamox efficacy. Weed Technol 15:485491 Google Scholar
Riar, DS, Norsworthy, JK, Steckel, LE, Stephenson, D IV, Eubank, TW, Scott, RC (2013) Assessment of weed management practices and problem weeds in midsouth United States—soybean: a consultant's perspective. Weed Technol 27:612622 Google Scholar
Squire, HB (1953) Investigation of the instability of a moving liquid film. Br J Appl Phys 4:167 Google Scholar