Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-16T23:41:51.828Z Has data issue: false hasContentIssue false

Effect of Temperature and Moisture on Aminocyclopyrachlor Soil Half-Life

Published online by Cambridge University Press:  20 January 2017

Katie L. Conklin
Affiliation:
Plant Sciences Department, North Dakota State University, Fargo, ND 58105
Rodney G. Lym*
Affiliation:
Plant Sciences Department, North Dakota State University, Fargo, ND 58105
*
Corresponding author's E-mail: Rod.Lym@ndsu.edu

Abstract

Aminocyclopyrachlor will control a variety of invasive weeds but may injure sensitive plant species if seeded into treated soil too soon after application. Aminocyclopyrachlor 50% dissipation time (DT50) ranged from 3 to > 112 d in four soils from the Northern Great Plains. The DT50 was dependent on several factors including soil type, moisture content, and temperature. Across four different soil textures, aminocyclopyrachlor dissipation generally increased as soil moisture content increased, but moisture had less of an impact in sandy soils. Aminocyclopyrachlor dissipation also increased as temperature increased in the four soils. The most rapid dissipation occurred in soils with higher clay content, which also had the highest organic matter content of the soils evaluated, and an average DT50 of less than 20 d. Seeding sensitive pasture, range, or crop species after aminocyclopyrachlor applications should be done with caution since the herbicide has potential for long persistence in the soil.

Aminocyclopyrachlor controlará varias malezas invasivas, pero podría dañar especies de plantas sensibles si estas son sembradas en suelo tratado poco tiempo después de la aplicación. El tiempo de disipación del 50% de aminocyclopyrachlor (DT50) varió entre 3 y >112 días en cuatro suelos de las Grandes Planicies del Norte. El DT50 fue dependiente de varios factores incluyendo tipo de suelo, contenido de humedad, y temperatura. En las cuatro diferentes texturas de suelo, la disipación de aminocyclopyrachlor generalmente aumentó al incrementar el contenido de humedad del suelo, pero la humedad tuvo un impacto menor en suelos arenosos. La disipación de aminocyclopyrachlor también aumentó al incrementarse la temperatura en los cuatro suelos. La disipación más rápida, con un DT50 promedio de menos de 20 días, ocurrió en suelos con mayor contenido de arcilla, los cuales también tuvieron los mayores contenidos de materia orgánica en los suelos evaluados. La siembra de pastos, especies silvestres, o cultivos sensibles después de aplicaciones de aminocyclopyrachlor deberían realizarse con precaución en vista de que este herbicida tiene potencial de una larga persistencia en el suelo.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahmad, R., James, T. K., Rahman, A., and Holland, P. T. 2003. Dissipation of the herbicide clopyralid in an allophonic soil: laboratory and field studies. J. Env. Sci. Health. 38:683695.Google Scholar
Anonymous. 2009. DuPont: DPX-MAT28 Technical Bulletin. E.I. du Pont de Nemours and Company. Available at https://lists.alaska.edu/pipermail/cnipm-l/attachments/20090310/f10dfb94/MAT28TechBulletin.pdf. Accessed: January 19, 2012.Google Scholar
Bukun, B. R., Lindenmayer, B., Nissen, S. J., Westra, P., Shaner, D. L., and Brunk, G. 2010. Absorption and translocation of aminocyclopyrachlor and aminocyclopyrachlor methyl ester in Canada thistle (Cirsium arvense). Weed Sci. 58:96102.Google Scholar
Claus, J., Turner, R., Meredith, J., Holliday, M., and Williams, C. S. 2010. Aminocyclopyrachlor development and registration update. Denver, CO Weed Sci. Soc. Am. Abstr. O-303. Available at https://srm.conference-services.net/programme.asp?conferenceID=1756&action=prog_list&session=7601. Accessed: May 4, 2010.Google Scholar
Conklin, K. L. 2012. Aminocyclopyrachlor: Weed Control, Soil Dissipation, and Efficacy to Seedling Grasses. . Fargo, ND North Dakota State University. 83 p.Google Scholar
[EPA] Environmental Protection Agency. 2010. Registration of the new active ingredient aminocyclopyrachlor for use on non-crop areas, sod farms, turf, and residential lawns. Available at http://www.epa.gov/pesticides/chemical/pesticideregistrations/aminocyclopyrachlor.html. Accessed: October 24, 2011.Google Scholar
[EPA] Environmental Protection Agency. 2011. EPA Issues Stop Sale Order to DuPont on Sale and Distribution of Imprelis Herbicide. Available at http://yosemite.epa.gov/opa/admpress.nsf/eeffe922a687433c85257359003f5340/284e7190e1187415852578e9005e49c6!OpenDocument. Accessed: March 15, 2012.Google Scholar
Finkelstein, B. L., Armel, G. R., Bolgunas, S. A., Clark, D. A., Claus, J. S., Crosswicks, R. J., Hirata, C. M., Hollingshaus, G. J., Koeppe, M. K., Rardon, P. L., Wittenbach, V. A., and Woodward, M. D. 2008. Discovery of aminocyclopyrachlor (proposed common name) (DPX-MAT28): a new broad-spectrum auxinic herbicide. Philadelphia, PA ACS National Meeting Abst. AGRO 19. Available at http://oasys2.confex.com/acs/236nm/techprogram. Accessed: November 23, 2011.Google Scholar
Franzluebbers, A. J. 1999. Microbial activity in response to water-filled pore space of variably eroded sourthern Piedmont soils. Appl. Soil Ecol. 11:91101.Google Scholar
Gillaspy, G., Ben-David, H., and Gruissem, W. 1993. Fruits: a developmental perspective. Plant Cell. 5:14391451.Google Scholar
Green, R. E. and Obien, S. R. 1969. Herbicide equilibrium in soils in relation to soil water content. Weed Sci. 17:514519.Google Scholar
Grover, R. 1966. Influence of organic matter, texture, and available water on the toxicity of simazine in soil. Weeds. 14:148151.Google Scholar
Guenzi, W. D. and Beard, W. E. 1976. Picloram degradation in soils as influenced by soil water content and temperature. J. Environ. Qual. 5:189192.Google Scholar
Hellerstein, D. and Malcolm, S. 2011. Economic Research Service, U.S. Department of Agriculture. The Influence of Rising Commodity Prices on the Conservation Reserve Program. Economic Research Report Number 110. Available at http://www.ers.usda.gov/Publications/ERR110/ERR110.pdf. Accessed: January 19, 2012.Google Scholar
Kniss, A. R. and Lyon, D. J. 2011. Winter wheat response to preplant applications of aminocyclopyrachlor. Weed Technol. 25:5157.Google Scholar
Linn, D. M. and Doran, J. W. 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Am. J. 48:12671272.Google Scholar
Lindenmayer, B., Westra, P., Brunk, G., Nissen, S., and Shaner, D. 2010. Field and laboratory studies with aminocyclopyrachlor (DPX-MAT28). Denver, CO Weed Sci. Soc. Am. Abstr. O- 281. Available at https://srm.conference-services.net/programme.asp?conferenceID=1756&action=prog_list&session=759. Accessed: May 4, 2010.Google Scholar
Lindenmayer, B., Westra, P., Nissen, S., and Shaner, D. 2011. Characterization of aminocyclopyrachlor, aminopyralid, and clopyralid soil activity. Proc. West. Soc. Weed Sci. 64:64.Google Scholar
Meikle, R. W., Youngson, C. R., Hedlund, R. T., Goring, C. A. I., Hamaker, J. W., and Addington, W. W. 1973. Measurement and prediction of picloram disappearance rates from soil. Weed Sci. 21:549555.Google Scholar
Mikkelson, J. R. 2010. Effect of Aminopyralid on Crop Rotations and Native Forbs. . Fargo, ND North Dakota State University. 63 p.Google Scholar
Oliveira, R. S., Alonso, D. G., and Koskinen, W. C. 2011. Sorption–desorption of aminocyclopyrachlor in selected Brazilian soils. J Agric. Food Chem. 59:40454050.Google Scholar
Senseman, S. A. 2007a. Aminopyralid. Pages 331332 in Herbicide Handbook. 9th ed. Lawrence, KS Weed Science Society of America.Google Scholar
Senseman, S. A. 2007b. Picloram. Pages 353356 in Herbicide Handbook. 9th ed. Lawrence, KS Weed Science Society of America.Google Scholar
Soil Survey Staff. 2011. Natural Resources Conservation Service, U.S. Department of Agriculture. Web Soil Survey. Available at http://websoilsurvey.nrcs.usda.gov/. Accessed: December 5, 2011.Google Scholar
Stevens, R. and Burke, I. C. 2009. Response of rush skeletonweed to postemergence foliar vs. soil treatments of aminocyclopyrachlor, aminopyralid, and clopyralid. Proc. West. Soc. Weed Sci. 62:43.Google Scholar
Walker, A. 1987. Herbicide persistence in soil. Rev. Weed Sci. 3:117.Google Scholar
Westra, P., Lindenmayer, B., Nissen, S., Shaner, D., D'Amato, T., and Goeman, B. 2010. Integrating aminocyclopyrachlor into weed management plans. Denver, CO Weed Sci. Soc. Am. Abstr. O-304. Available at https://srm.conference-services.net/programme.asp?conferenceID=1756&action=prog_list&session=7601. Accessed: May 4, 2010.Google Scholar
Westra, P., Nissen, S., Gaines, T., Bekun, B., Lindenmayer, B., and Shaner, D. 2008a. Aminocyclopyrachlor for invasive weed management and restoration grass safety in the central great plains. Champaign, IL North Cent. Weed Sci. Soc. Abstr. 203. Available at http://www.ncwss.org/proceed/2008/abstracts/203.pdf. Accessed: May 4, 2010.Google Scholar
Westra, P., Wilson, R., and Edwards, M. 2008b. Agronomic crop responses to KJM-44 herbicide. Proc. West. Soc. Weed Sci. 61:62.Google Scholar