Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T00:30:21.773Z Has data issue: false hasContentIssue false

Effects of Adjuvants, Halosulfuron, and Grass Herbicides on Cucurbita spp. Injury and Grass Control

Published online by Cambridge University Press:  20 January 2017

Kate J. Kammler
Affiliation:
Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, 1205 Lincoln Drive, Carbondale, IL 62901
S. Alan Walters
Affiliation:
Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, 1205 Lincoln Drive, Carbondale, IL 62901
Bryan G. Young*
Affiliation:
Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, 1205 Lincoln Drive, Carbondale, IL 62901
*
Corresponding author's E-mail: bgyoung@siu.edu.

Abstract

Greenhouse experiments were conducted to evaluate pumpkin cultivar injury and control of three grass species from tank-mixtures of halosulfuron with either clethodim or sethoxydim in combination with nonionic surfactant (NIS), crop-oil concentrate (COC), methylated seed oil (MSO), and high-surfactant oil concentrate (HSOC). Pumpkin injury, in the form of chlorosis and visual growth reduction, was 13 to 21% by 7 d after treatment (DAT) for all pumpkin cultivars. The specific adjuvant used with halosulfuron did not influence pumpkin injury or final plant dry weight. Pumpkin growth reduction at 21 DAT from halosulfuron was less than 9% for all pumpkin cultivars with the least growth reduction (5% or less) observed with Cucurbita pepo ‘Howden’, C. pepo ‘Appalachian’, and Cucurbita moschata ‘Libby's Select’. The efficacy of sethoxydim or clethodim on large crabgrass was antagonized by the addition of halosulfuron with NIS or COC. However, only combinations of sethoxydim and halosulfuron with COC or MSO were antagonistic on smooth crabgrass. Giant foxtail dry weight reduction was decreased 4 to 24% by the addition of halosulfuron to sethoxydim with NIS and clethodim regardless of adjuvant. Although the frequency and magnitude of grass antagonism was variable, the use of clethodim and MSO with halosulfuron most often provided the greatest level of grass control compared with sethoxydim or other adjuvants.

Se realizaron experimentos en invernadero para evaluar el daño en cultivares de calabaza y el control de tres especies de zacates, a partir de mezclas de halosulfuron con clethodim o sethoxydim en combinación con surfactante no-iónico (NIS), concentrado de aceite vegetal (COC), aceite metilado de semilla (MSO) y un surfactante con alto concentrado de aceite (HSOC). Daños en forma de clorosis y reducción visual de crecimiento en todos los cultivares de calabaza, fueron de 13 a 21% siete días después del tratamiento (DAT). El adyuvante específico usado con halosulfuron, no influyó en daños a la calabaza o en el peso seco de la planta. A 21 DAT, la reducción en el crecimiento de dicho fruto debido a la aplicación de halosulfuron, fue menor del 9% para todos los cultivares, registrando la menor reducción en el crecimiento (5% o menos), Cucurbita pepo ‘Howden’, C. pepo “Appalachian' y C. moschata ‘Libby's Select’. La eficacia del sethoxydim o clethodim en Digitaria sanguinalis fue antagonizado por la adición de halosulfuron con NIS o COC. Sin embargo, solo combinaciones de sethoxydim y halosulfuron con COC o MSO fueron antagónicas en Digitaria ischaemum. El peso seco de Setari faberi, disminuyó entre 4 y 24% debido a la adición de halosulfuron a sethoxydim con NIS y clethodim, indistintamente del adyuvante. Aún cuando la frecuencia y la magnitud del antagonismo en gramíneas fueron variables, el uso de clethodim y MSO con halosulfuron, proporcionaron en la mayoría de los casos el mejor nivel de eficacia sobre las gramíneas comparado con sethoxydim u otros adyuvantes.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

BASF Corporation 2006. Poast Herbicide Label. http://www.cdms.net/LDat/ld00F025.pdf. Accessed: September 21, 2008.Google Scholar
Brown, D. and Masiunas, J. 2002. Evaluation of herbicides for pumpkin (Cucurbita spp.). Weed Technol 16:282292.Google Scholar
Campbell, J. R. and Penner, D. 1982. Compatibility of diclofop and BAS 9052 with bentazon. Weed Sci 30:458462.Google Scholar
Colby, S. R. 1967. Calculating synergistic and antagonistic responses of herbicide combinations. Weeds 15:2022.Google Scholar
Croon, K. A., Ketchersid, M. L., and Merkle, M. G. 1989. Effect of bentazon, imazaquin, and chlorimuron on the absorption and translocation of the methyl ester of haloxyfop. Weed Sci 37:645650.Google Scholar
Gowan 2008. Sandea Herbicide Label. http://www.gowanco.com/Reference/Document.aspx?rid=422. Accessed: September 21, 2008.Google Scholar
Grey, T. L., Bridges, D. C., and NeSmith, D. S. 2000. Tolerance of cucurbits to the herbicides clomazone, ethalfluralin, and pendimethalin. I. Summer squash. HortScience 32:632636.Google Scholar
Holshouser, D. L. and Coble, H. D. 1990. Compatibility of sethoxydim with five postemergence broadleaf herbicides. Weed Technol 4:128133.Google Scholar
Hutchinson, P. J. S., Eberlein, C. V., and Tonks, D. J. 2004. Broadleaf weed control and potato crop safety with postemergence rimsulfuron, metribuzin, and adjuvant combinations. Weed Technol 18:750756.Google Scholar
Jordan, D. L., York, A. C., and Corbin, R. J. 1989. Effect of ammonium sulfate and bentazon on sethoxydim absorption. Weed Technol 3:674677.Google Scholar
Kammler, K. J., Walters, S. A., and Young, B. G. 2008. Halosulfuron tank mixtures and adjuvants for weed control in pumpkin production. HortScience 43:18231825.Google Scholar
Nalewaja, J. D., Skrzypczak, G. A., and Gillespie, G. R. 1986. Absorption and translocation of herbicides with lipid compounds. Weed Sci 34:564568.Google Scholar
Rapp, H. S., Bellinder, R. R., Wien, H. C., and Vermeylen, F. M. 2004. Reduced tillage, rye residues, and herbicides influence weed suppression and yield of pumpkins. Weed Technol 18:953961.Google Scholar
Trader, B. W., Wilson, H. P., and Hines, T. E. 2007. Halosulfuron helps control several broadleaf weeds in cucumber and pumpkin. Weed Technol 21:966971.Google Scholar
Valent U.S.A. Corporation 2007. Select Herbicide Label. http://www.cdms.net/LDat/ld837005.pdf. Accessed: September 21, 2008.Google Scholar
Walters, S. A., Young, B. G., and Krausz, R. F. 2008. Influence of tillage, cover crop, and pre-emergence herbicides on weed control and pumpkin yield. Int. J. Veg. Sci 14:148161.Google Scholar
Webster, T. M., Culpepper, A. S., and Johnson, W. C. III. 2003. Response of squash and cucumber cultivars to halosulfuron. Weed Technol 17:173176.Google Scholar
Wixson, M. B. and Shaw, D. R. 1991. Effect of adjuvants on weed control and soybean (Glycine max) tolerance with AC 263,222. Weed Technol 5:817822.Google Scholar
Young, B. G. 2008. Compendium of Herbicide Adjuvants. 9th ed. Carbondale, IL: Southern Illinois University. 48.Google Scholar
Young, B. G., Hart, S. E., and Wax, L. M. 1996. Interactions of sethoxydim and corn (Zea mays) postemergence broadleaf herbicides on three annual grasses. Weed Technol 10:914922.Google Scholar
Young, B. G., Zollinger, R., and Bernards, M. 2007. Variability of tembotrione efficacy as influenced by commercial adjuvant products. Proc. North Cent. Weed Sci. Soc 62:141.Google Scholar