Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T15:25:07.257Z Has data issue: false hasContentIssue false

Efficacy of 1,3-Dichloropropene Plus Chloropicrin in Combination with Herbicides on Purple Nutsedge (Cyperus rotundus) Control in Tomato

Published online by Cambridge University Press:  20 January 2017

James P. Gilreath
Affiliation:
Gulf Coast Research and Education Center, University of Florida, 5007 60th Street East, Bradenton, FL 34203
Bielinski M. Santos*
Affiliation:
Gulf Coast Research and Education Center, University of Florida, 5007 60th Street East, Bradenton, FL 34203
*
Corresponding author's E-mail: bmsantos@ifas.ufl.edu

Abstract

A study was conducted to compare the effect of 1,3-dichloropropene (1,3-D) + chloropicrin (Pic) in a 83:17 ratio (C-17) used alone or in combination with herbicides on tomato. Treatments evaluated included 1,3-D (325 kg ai/ha) plus Pic (67 kg ai/ha) used either alone or with pebulate (4.5 kg ai/ha), napropamide (4.5 kg ai/ha), metolachlor (1.1 and 2.3 kg ai/ha), lactofen (2.3 kg ai/ha), or flazasulfuron (0.4 kg ai/ha). Pebulate was consistently more effective in controlling purple nutsedge than the other herbicides tested. Purple nutsedge was more effectively controlled with C-17 in combination with pebulate than with the fumigant alone. Shallow incorporation of pebulate failed to improve weed control and tomato fruit yield.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Curran, W. S. 1998. Persistance of Herbicides in Soil. State College, PA: Pennsylvania State University Agronomic Facts 36. 16 p.Google Scholar
Gilreath, J. P. and Gilreath, P. R. 1992. Phytotoxicity of foliar applications of lactofen to tomato as influenced by placement. Proc. Fla. State Hortic. Soc 105:367370.Google Scholar
Gilreath, J. P., Jones, J. P., and Noling, J. W. 1996. Effect of incorporation method on pebulate efficacy under polyethylene mulch in tomato. Proc. Fla. State Hortic. Soc 109:190192.Google Scholar
Gilreath, J. P., Jones, J. P., and Overman, A. J. 1994. Soilborne pest control in mulched tomato with alternatives to methyl bromide. Proc. Fla. State Hortic. Soc 107:156159.Google Scholar
Gilreath, J. P. and Santos, B. M. 2004a. Manejo del coquillo (Cyperus rotundus) con alternativas al bromuro de metilo en tomate de mesa. Manejo Integrado de Plagas y Agroecología 71:5458.Google Scholar
Gilreath, J. P. and Santos, B. M. 2004b. Herbicide dose and incorporation depth in combination with 1,3-dichloropropene plus chloropicrin for Cyperus rotundus control in tomato and pepper. Crop Prot 23:205210.Google Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds: Distribution and Biology. Honolulu, HI: University Press of Hawaii. P. 8.Google Scholar
Jones, J. P., Gilreath, J. P., and Overman, A. J. 1995. Control of soil-borne disease of mulched tomato by fumigation. Proc. Fla. State Hortic. Soc 108:201203.Google Scholar
Locascio, S. J., Gilreath, J. P., Dickson, D. W., Kucharek, T. A., Jones, J. P., and Noling, J. W. 1997. Fumigant alternatives to methyl bromide for polyethylene-mulched tomato. Hortscience 32:12081211.CrossRefGoogle Scholar
Locke, M. A. and Bryson, C. T. 1997. Herbicide-soil interactions in reduced tillage and plant residue management systems. Weed Sci. 45:307320.Google Scholar
Maynard, D. N., Hochmuth, G. J., Olson, S. M., Vavrina, C. S., Stall, W. M., Kucharek, T. A., Webb, S. E., Taylor, T. G., and Smith, S. A. 2003. Tomato production in Florida. in Olson, S. O. and Maynard, D. N., eds. Vegetable Production Guide for Florida, 2002–2003. Gainesville, FL: IFAS. Pp. 259270.Google Scholar
Santos, B. M., Morales-Payan, J. P., Bewick, T. A., and Shilling, D. G. 1997a. Effects of shading on the growth of nutsedges (Cyperus spp). Weed Sci. 45:670673.Google Scholar
Santos, B. M., Morales-Payan, J. P., Stall, W. M., and Bewick, T. A. 1997b. Influence of tuber size and shoot removal on purple nutsedge (Cyperus rotundus) regrowth. Weed Sci. 45:681683.Google Scholar
[SAS] Statistical Analysis Systems. 2000. SAS User's Guide. Version 8. Cary, NC: Statistical Analysis Systems Institute. 3884 p.Google Scholar
Stall, W. M. and Gilreath, J. P. 2002. Weed control in tomato. in Stall, W. M., ed. Weed Management in Florida Fruits and Vegetables, 2002–2003. Gainesville, FL: IFAS. Pp. 5558.Google Scholar
[USDA] U.S. Department of Agriculture. 1998. Vegetables: Acreage, Production and Value. Orlando, Florida: Florida Agricultural Statistics Service. Web page: http://www.nass.usda.gov. Accessed: January 29, 1998.Google Scholar
[USDA] U.S. Department of Agriculture. 1999. Vegetables: 1999 Summary. Washington, DC: National Agriculture Statistics Service. 128 p.Google Scholar
Watson, R. T., Albritton, D. T., Anderson, S. O., and Lee-Bapty, S. 1992. Methyl Bromide: Its Atmospheric Science, Technology and Economics. Nairobi, Kenya: Montreal Protocol Assessment Supplement, United Nations Environment Programme. 234 p.Google Scholar
Williams, R. D. 1982. Growth and reproduction of Cyperus esculentus L. and Cyperus rotundus L. Weed Res 22:149154.Google Scholar