Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T09:40:04.996Z Has data issue: false hasContentIssue false

Evaluation of Flumioxazin and S-metolachlor Rate and Timing for Palmer Amaranth (Amaranthus palmeri) Control in Sweetpotato

Published online by Cambridge University Press:  20 January 2017

Stephen L. Meyers*
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
Katherine M. Jennings
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
Jonathan R. Schultheis
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
David W. Monks
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
*
Corresponding author's E-mail: slmeyers@ncsu.edu.

Abstract

Studies were conducted in 2007 and 2008 to determine the effect of flumioxazin and S-metolachlor on Palmer amaranth control and ‘Beauregard’ and ‘Covington’ sweetpotato. Flumioxazin at 0, 91, or 109 g ai ha−1 was applied pretransplant 2 d before transplanting alone or followed by (fb) S-metolachlor at 0, 0.8, 1.1, or 1.3 kg ai ha−1 PRE applied immediately after transplanting or 2 wk after transplanting (WAP). Flumioxazin fb S-metolachlor immediately after transplanting provided greater than 90% season-long Palmer amaranth control. S-metolachlor applied alone immediately after transplanting provided 80 to 93% and 92 to 96% control in 2007 and 2008, respectively. Flumioxazin fb S-metolachlor 2 WAP provided greater than 90% control in 2007 but variable control (38 to 79%) in 2008. S-metolachlor applied alone 2 WAP did not provide acceptable Palmer amaranth control. Control was similar for all rates of S-metolachlor (0.8, 1.1, and 1.3 kg ha−1). In 2008, greater Palmer amaranth control was observed with flumioxazin at 109 g ha−1 than with 91 g ha−1. Sweetpotato crop injury due to treatment was minimal (< 3%), and sweetpotato storage root length to width ratio was similar for all treatments in 2007 (2.5 for Beauregard) and 2008 (2.4 and 1.9 for Beauregard and Covington, respectively). Sweetpotato yield was directly related to Palmer amaranth control. Results indicate that flumioxazin pretransplant fb S-metolachlor after transplanting provides an effective herbicide program for control of Palmer amaranth in sweetpotato.

Se llevaron al cabo estudios durante 2007 y 2008 para determinar el efecto de flumioxazin y S-metolachlor en el control de la Amaranthus palmeri S. e Ipomoea batatas L. Lam. ‘Covington’ y ‘Beauregard’. El flumioxazin a 0, 91, o 109 g ia ha−1 se aplicó solo 2 días antes del transplante o seguido de (fb) S-metolachlor a 0, 0.8, 1.1, o 1.3 kg ia ha−1 PRE aplicado inmediatamente después de ser transplantado ó 2 semanas después de la siembra (WAP). El Flumioxazin fb S-metolachlor aplicado inmediatamente después de la transplante, proporcionó > 90% de control de la Amaranthus palmeri S durante la estación. El S-metolachlor aplicado por sí solo inmediatamente después del transplante proporcionó del 80 al 93% y del 92 al 96% de control en 2007 y 2008 respectivamente. El flumioxazin fb S-metolachlor aplicado 2 WAP proporcionó > 90% de control en 2007 pero en el 2008 se obtuvo un control variable (del 38 al 79%). El S-metolachlor aplicado solo 2 WAP, no tuvo como resultado un control aceptable de la Amaranthus palmeri S. El control fue similar para todas las dosis de S-metolachlor (0.8, 1.1, y 1.3 kg ha−1). En el 2008, se observó un mayor control de la Amaranthus palmeri S. con el uso de flumioxazin a 109 g ha−1 que con la aplicación de 91 g ha−1. El daño al fruto de Ipomoea batatas L. debido al tratamiento fue mínimo (< 3%) y la proporción entre el largo y el ancho del tubérculo en condiciones de almacenamiento fue similar para todos los tratamientos en 2007 (2.5 para Beauregard) y en el 2008 (2.4 y 1.9 para Beauregard y Covington, respectivamente). El rendimiento del Ipomoea batatas L. estuvo directamente relacionado con el control de la Amaranthus palmeri S. Los resultados indican que el Flumioxazin aplicado antes del transplante con el fb S-metolachlor después del transplante ofrece un programa efectivo de herbicida para controlar la Amaranthus palmeri S. en el cultivo del Ipomoea batatas L.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous 2004a. Valor® SX herbicide label. Walnut Creek, CA: Valent U.S.A. Corporation.Google Scholar
Anonymous 2004b. Dual Magnum® herbicide label. Greensboro, NC: Syngenta Crop Protection.Google Scholar
Anonymous 2005. Agri-Dex® adjuvant label. Collierville, TN: Helena Chemical Co.Google Scholar
Anonymous 2007. Roundup WeatherMax® herbicide label. St. Louis, MO: Monsanto Company.Google Scholar
Anonymous 2008. Aim® EC herbicide label. Philadelphia, PA: FMC Corp.Google Scholar
Bensch, C. N., Horak, M. J., and Peterson, D. 2003. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci. 51:3743.Google Scholar
Brill, N. 2005. Effects of Grower Practices and Field Characteristics on Insect Damage to Sweetpotato (Ipomoea batatas (L.) Lam.) Roots. . Raleigh, NC: North Carolina State University. 135 p.Google Scholar
Burke, I. C., Schroeder, M., Thomas, W. E., and Wilcut, J. W. 2007. Palmer amaranth interference and seed production in peanut. Weed Technol. 21:367371.Google Scholar
1988. Clark, C. A. and Moyer, J. W. Compendium of Sweet Potato Diseases. St. Paul, MN: The American Phytopathological Society. Pp. 5759.Google Scholar
Clewis, S. B., Everman, W. J., Jordan, D. L., and Wilcut, J. W. 2007. Weed management in North Carolina peanuts (Arachis hypogaea) with S-metolachlor, diclosulam, flumioxazin, and sulfentrazone systems. Weed Technol. 21:629635.Google Scholar
Glaze, N. C. and Hall, M. R. 1986. The effects of herbicides on weed control and yield of sweet potatoes. Proc. South. Weed Sci. Soc. 39:172.Google Scholar
Glaze, N. C. and Hall, M. R. 1990. Cultivation and herbicides for weed control in sweet potato (Ipomoea batatas). Weed Technol. 4:518523.Google Scholar
Guo, P. and Al-Khatib, K. 2003. Temperature effects on germination and growth of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis). Weed Sci. 51:869875.Google Scholar
Hess, F. D. 2000. Light-dependent herbicides: an overview. Weed Sci. 48:160170.CrossRefGoogle Scholar
2008. Holmes, G. J. and Kemble, J. M. Vegetable Crop Handbook for the Southeastern United States 2009. Lincolnshire, IL: Vance. Pp. 9394, 269.Google Scholar
Horak, M. J. and Loughin, T. M. 2000. Growth and analysis of four Amaranthus species. Weed Sci. 48:347355.Google Scholar
Jha, P. and Norsworthy, J. K. 2005. Effect of soybean canopy formation and tillage on temporal emergence of Palmer amaranth. Proc. South. Weed Sci. Soc. 58:214.Google Scholar
Jha, P., Norsworthy, J. K., Riley, M. B., Bielenberg, D. G., and Bridges, W. Jr. 2008. Acclimation of Palmer amaranth (Amaranthus palmeri) to shading. Weed Sci. 56:729734.Google Scholar
Keeley, P. E., Carter, C. H., and Thullen, R. J. 1987. Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci. 35:199204.CrossRefGoogle Scholar
Kelly, S. T., Shankle, M. W., and Miller, D. K. 2006. Efficacy and tolerance of flumioxazin on sweetpotato (Ipomoea batatas). Weed Technol. 20:334339.Google Scholar
La Bonte, D. R., Harrison, H. F., and Motsenbocker, C. E. 1999. Sweetpotato clone tolerance to weed interference. J. Hortic. Sci. 34:229232.Google Scholar
Massinga, R. A., Currie, R. S., Horak, M. J., and Boyer, J. Jr. 2001. Interference of Palmer amaranth in corn. Weed Sci. 49:202208.Google Scholar
Meyers, S. L., Jennings, K. M., Schultheis, J. R., and Monks, D. W. 2010. Interference of Palmer amaranth (Amaranthus palmeri) in sweetpotato. Weed Sci. 58:199203.Google Scholar
Monks, D. W., Coffey, D. L., Cordrey, T. D., and McLaurin, W. J. 1981. Herbicide evaluation in sweet potatoes. Proc. South. Weed Sci. Soc. 34:106.Google Scholar
Monks, D. W., Mitchem, W. E., Mills, R. J., and Greeson, C. V. 1998. Response of nutsedge and sweetpotato to EPTC and metolachlor. Proc. South. Weed Sci. Soc. 51:91.Google Scholar
Monks, D. W. and Oliver, L. R. 1988. Interactions between soybean (Glycine max) cultivars and selected weeds. Weed Sci. 36:770774.Google Scholar
[NCDA and CS] North Carolina Department of Agriculture and Consumer Services 2008. North Carolina Agricultural Statistics. Raleigh, NC: North Carolina Department of Agriculture.Google Scholar
Norsworthy, J. K., Oliveira, M. J., Jha, P., Malik, M., Buckelew, J. K., Jennings, K. M., and Monks, D. W. 2008. Palmer amaranth and large crabgrass growth with plasticulture-grown bell pepper. Weed Technol. 22:296302.CrossRefGoogle Scholar
Parker, N. Y., Monaco, T. J., Leidy, R. B., and Sheets, T. J. 1985. Weed control with fluazifop and residues in cucurbit crops (Cucumis sp.) and sweet potatoes (Ipomoea batatas). Weed Sci. 33:405410.Google Scholar
Porter, W. C. 1993. Postemergence grass control in sweet potatoes (Ipomoea batatas). Weed Technol. 7:812815.Google Scholar
Porter, W. C. 1994. Sedge (Cyperus ssp.) control in sweet potatoes. Proc. South. Weed Sci. Soc. 47:79.Google Scholar
Porter, W. C. 1995. Response of sweetpotato cultivars to metolachlor. J. Hortic. Sci. 30:441.Google Scholar
SAS 2004. SAS/STAT® 9.1 User's Guide. Cary, NC: SAS Institute.Google Scholar
Seem, J. E., Creamer, N. G., and Monks, D. W. 2003. Critical weed-free period for ‘Beauregard’ sweetpotato (Ipomoea batatas). Weed Technol. 17:686695.Google Scholar
Sellers, B. A., Smeda, R. J., Johnson, W. G., Kendig, J. A., and Ellersieck, M. R. 2003. Comparative growth of six Amaranthus species in Missouri. Weed Sci. 51:329333.Google Scholar
Semidey, N., Liu, L. C., and Ortiz, F. H. 1987. Competition of pigweed (Amaranth dubius) with sweetpotato (Ipomoea batatas). J. Agric. Univ. Puerto Rico 71:711.CrossRefGoogle Scholar
Treadwell, D. D., Creamer, N. G., Schultheis, J. R., and Hoyt, G. D. 2007. Cover crop management affects weeds and yield of organically managed sweetpotato systems. Weed Technol. 21:10391048.Google Scholar
[USDA] U.S. Department of Agriculture 2005. United States Standards for Grades of Sweet Potatoes. Washington, DC: U.S. Department of Agriculture.Google Scholar
[USDA-NASS] U.S. Department of Agriculture National Agricultural Statistics Service 2009. 2007 Census of Agriculture. Washington DC: U.S. Department of Agriculture.Google Scholar
[USDA-NRCS] U.S. Department of Agriculture Natural Resources Conservation Service PLANTS Profile—Amaranthus palmer S. Watson, Carelessweed. http://plants.usda.gov/java/nameSearch?keywordquery=amaranthus+Palmeri&mode=sciname. Accessed: April 27, 2009.Google Scholar
2002. Vencill, W. K. Herbicide Handbook. 8th ed. Champaign, IL: Weed Science Society of America. Pp. 200202, 299–300.Google Scholar
Webster, T. M. 2006. Weed survey—southern states. Proc. South Weed Sci. Soc. 59:260277.Google Scholar
Yencho, G. C., Pecota, K. V., Schultheis, J. R., VanEsbroeck, Z. P., Holmes, G. J., Little, B. E., Thornton, A. C., and Truong, V. D. 2008. Covington sweetpotato. J. Hortic. Sci. 43:19111914.Google Scholar