Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T05:20:15.006Z Has data issue: false hasContentIssue false

Evaluation of Imazosulfuron for Broadleaf Weed Control in Drill-Seeded Rice

Published online by Cambridge University Press:  20 January 2017

Rakesh K. Godara*
Affiliation:
School of Plant, Soil and Environmental Sciences, Louisiana State University and A&M College, Baton Rouge, LA 70803
Billy J. Williams
Affiliation:
Scott Research/Extension Center, 212-B Macon Ridge Road, Winnsboro, LA 71295
Eric P. Webster
Affiliation:
School of Plant, Soil and Environmental Sciences, Louisiana State University and A&M College, Baton Rouge, LA 70803
James L. Griffin
Affiliation:
School of Plant, Soil and Environmental Sciences, Louisiana State University and A&M College, Baton Rouge, LA 70803
Donnie K. Miller
Affiliation:
Northeast Research Station, LSU Agricultural Center, P.O. Box 438, Saint Joseph, LA 71366
*
Corresponding author's E-mail: rkgodara@gmail.com

Abstract

Field experiments were conducted in 2006, 2007, and 2008 at the Louisiana State University Agricultural Center's Northeast Research Station near St. Joseph, LA, to evaluate imazosulfuron programs involving rate, application timings, and tank mixes for PRE and POST broadleaf weed control in drill-seeded rice. Imazosulfuron showed residual activity against both Texasweed and hemp sesbania. PRE-applied imazosulfuron at 168 g ai ha−1 and higher rates provided 83 to 93% Texasweed control at 4 WAP. At 12 WAP, Texasweed control with 168 g ha−1 and higher rates was 92%. Hemp sesbania control with 168 g ha−1 and higher rates was 86 to 89% at 4 WAP and 65 to 86% at 12 WAP. Imazosulfuron at 224 g ha−1 applied EPOST provided 84 to 93% Texasweed control and 82 to 87% hemp sesbania control, and it was as effective as its tank mixture with bispyribac-sodium. When applied LPOST, four- to five-leaf Texasweed, imazosulfuron alone at 224 g ha−1 was not effective against Texasweed and hemp sesbania, but did improve weed control when mixed with bispyribac-sodium at 17.6 g ai ha−1.

En 2006, 2007 y 2008 se realizaron experimentos de campo en la estación de investigación noreste, del Centro Agrícola de la Universidad Estatal de Louisiana, cerca de St. Joseph, LA, para evaluar programas de imazosulfuron considerando dosis, tiempos de aplicación y mezclas en tanque, para el control PRE y POST de maleza de hoja ancha en arroz sembrado con maquinaria. El imazosulfuron mostró actividad residual contra Caperonia palustris y Sesbania herbacia. El imazosulfuron aplicado PRE a 168 g ia ha−1 y a dosis mayores, proporcionaron de 83 a 93% de control en C. palustris a 4 WAP. A 12 WAP, el control de C. palustris con 168 g ha−1 y a dosis mayores fue de 92%. El control de S. herbacia con 168 g ha−1 y a dosis mayores fue de 86 a 89% a 4 WAP y de 65 a 86% a 12 WAP. El imazosulfuron a 224 g ha−1 aplicado POST temprano, proporcionó de 84 a 93% de control en C. palustris y de 82 a 87% de control en S. herbacia y fue tan efectivo como cuando se mezcló con bispiribac sodio. Imazosulfuron solo asperjado POST tardío en dosis de 224 g ha−1 a C. palustris en su etapa de cuatro a cinco hojas, no fue efectivo contra esta especie ni contra S. herbacia, pero sí mejoró el control de maleza cuando se mezcló con bispiribac sodio a 17.6 g ia ha−1.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2011. Rice Chemical Weed Control, Louisiana Suggested Chemical Weed Management Guide. Publication 156.5, Revision 3/11. Baton Rouge, LA Louisiana State University Agricultural Center and Louisiana Cooperative Extension Service. 46 p.Google Scholar
Baltazar, A. M. and Smith, R. J. Jr. 1994. Propanil-resistant barnyardgrass (Echinochloa crus-galli) control in rice (Oryza sativa). Weed Sci. 8:576581.Google Scholar
Baron, J. 2006. The IR-4 Project: 2006 IR-4 New Products/Transitional Solution List. http://www.aftresearch.org/sai/public/pdf/NewProductsAugust2006.pdf. Accessed: August 15, 2011.Google Scholar
Bennett, D. 2003. Mexican/Texas Weed Spreading. Delta Farm Press: Prism Business Media. http://deltafarmpress.com/mag/farming_mexicantexas_weed_spreading/index.html. Accessed: August 15, 2011.Google Scholar
Brommer, C. L., Shaw, D. R., Duke, S. O., Reddy, K. N., and Willeford, K. O. 2000. Antagonism of BAS 625 by selected broadleaf herbicides and the role of ethanol. Weed Sci. 48:181187.Google Scholar
Byrd, J. D. Jr. and York, A. C. 1987. Annual grass control in cotton with fluazifop, sethoxydim, and selected dinitroaniline herbicides. Weed Sci. 35:388394.CrossRefGoogle Scholar
Esqueda, V. and Rosales, E. 2004. Evaluation of bispyribac-sodium for weed control in rainfed rice. Agronomía Mesoamericana. 15:915.Google Scholar
Felix, J. and Boydston, R. A. 2010. Evaluation of imazosulfuron for yellow nutsedge (Cyperus esculentus) and broadleaf weed control in potato. Weed Technol. 24:471477.Google Scholar
Godara, R. K., Williams, B. J., and Angel, S. L. 2010. Texasweed (Caperonia palustris) interference in drill-seeded rice. Proc. South. Weed Sci. Soc. 63:34.Google Scholar
Grossmann, K. 1998. Quinclorac belongs to a new class of highly selective auxin herbicides. Weed Sci. 46:707716.Google Scholar
Henry, G. M. and Sladek, B. 2008. Control of yellow and purple nutsedge in bermudagrass with imazosulfuron. Proc. South. Weed Sci. Soc. 61:125.Google Scholar
Jordan, D. L. 1997. Efficacy of reduced rates of quinclorac applied with propanil or propanil plus monilate in dry-seeded rice (Oryza sativa). Weed Sci. 45:824828.Google Scholar
Kurtz, M. 2004. Texasweed Best Controlled at One- to Three-Leaf Stage. Web resource: Mississippi State University, Delta Research and Extension Center, Stoneville, MS. http://www.msstate.edu/dept/drec/rice/rice_research_updates/fall_2005/texasweed_best_controlled_at_kurtz_rice_print.htm. Accessed: October 10, 2010.Google Scholar
Lopez-Martinez, N. 1997. Resistance of barnyardgrass (Echinochloa crus-galli) to atrazine and quinclorac. Pestic. Sci. 51:171175.Google Scholar
Lovelace, M. L., Talbert, R. E., Hoagland, R. E., and Scherder, E. F. 2007. Quinclorac absorption and translocation characteristics in quinclorac- and propanil-resistant and -susceptible barnyardgrass (Echinochloa crus-galli) biotypes. Weed Technol. 21:683687.CrossRefGoogle Scholar
Malik, M. S., Burgos, N. R., and Talbert, R. E. 2010. Confirmation and control of propanil-resistant and quinclorac-resistant barnyardgrass (Echinochloa crus-galli) in rice. Weed Technol. 24:226233.Google Scholar
Pearson, B. A., Scott, R. C., and Carey, V. F. III. 2008. Urea ammonium nitrate effects on bispyribac and penoxsulam efficacy. Weed Technol. 22:597601.Google Scholar
SAS. 2003. SAS/STAT® Software Version 9.1.3. Cary, NC SAS Institute. Inc.Google Scholar
Saxton, A. M. 1998. A macro for converting mean separation output to letter groupings in Proc. Mixed. Pages 12431246. in Proceedings of the 23rd SAS Users Group International. Cary, NC SAS Institute.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Feurst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.Google Scholar
Smith, R. J. Jr. 1968. Weed competition in rice. Weed Sci. 16:252255.CrossRefGoogle Scholar
Street, J. E. and Mueller, T. C. 1993. Rice (Oryza sativa) weed control with soil applications of Facet. Weed Technol. 7:600604.Google Scholar
[USDA] U.S. Department of Agriculture. 2006. Agricultural chemical usage, rice. National Agricultural Statistics Service—Quick Stats. http://www.nass.usda.gov/QuickStats/. Accessed: October 10, 2010.Google Scholar
Valverde, B. E., Carmiol, J., Riches, C. R., Caseley, J. C., Vargas, E., Chaves, L., Garita, I., and Ramirez, F. 2001. Modified herbicide regimes for propanil-resistant junglerice control in rain-fed rice. Weed Sci. 49:395405.Google Scholar
Webster, E. P., Baldwin, F. L., and Dillon, T. L. 1999. The potential for clomazone use in rice (Oryza sativa). Weed Technol. 13:390393.Google Scholar
Williams, B. J. and Burns, A. B. 2006. Penoxsulam a new herbicide for broadleaf weed management in rice. Proc. South. Weed Sci. Soc. 59:12.Google Scholar
Williams, B. J., Burns, A. B., and Copes, D. P. 2004. Evaluation of DE-638 in drill-seeded rice. Proc. South. Weed Sci. Soc. 57:72.Google Scholar
Zhang, W., Webster, E. P., and Blouin, D. C. 2005. Response of rice and barnyardgrass (Echinochloa crus-galli) to rates and timings of clomazone. Weed Technol. 19:528531.Google Scholar