Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T20:01:22.908Z Has data issue: false hasContentIssue false

Evaluation of Thiencarbazone-methyl– and Isoxaflutole-Based Herbicide Programs in Corn

Published online by Cambridge University Press:  20 January 2017

Daniel O. Stephenson IV*
Affiliation:
Dean Lee Research and Extension Center, Louisiana State University Agricultural Center, 8105 Tom Bowman Drive, Alexandria, LA 71302
Jason A. Bond
Affiliation:
Delta Research and Extension Center, Mississippi State University, P.O. Box 197, Stoneville, MS 38776
*
Corresponding author's E-mail: dstephenson@agcenter.lsu.edu

Abstract

Field studies were conducted in Louisiana and Mississippi in 2009 and 2010 to evaluate PRE herbicide treatments containing isoxaflutole or a prepackaged mixture of thiencarbazone-methyl : isoxaflutole (TCM : isoxaflutole) for weed control in corn. PRE treatments included the premix of TCM : isoxaflutole alone (30 : 80 g ai ha−1) and with atrazine (1,120 g ai ha−1), isoxaflutole alone (90 g ai ha−1) and with atrazine (1,120 g ai ha−1), and the premix of atrazine plus S-metolachlor (1,820 plus 1,410 g ai ha−1). POST treatments included glufosinate (450 g ai ha−1) or glyphosate (870 g ae ha−1) applied to 30-cm corn along with a no POST treatment. All PRE treatments controlled barnyardgrass, entireleaf morningglory, rhizomatous johnsongrass, Palmer amaranth, and velvetleaf 87 to 95% 4 wk after planting (WAP) and browntop millet and hophornbeam copperleaf were controlled 86 to 95% 8 WAP. Weed control was improved 8 and 20 WAP when either POST treatment was applied. TCM : isoxaflutole plus atrazine controlled barnyardgrass, entireleaf morningglory, Palmer amaranth, and velvetleaf at least 90% 20 WAP regardless of POST treatment. TCM : isoxaflutole plus atrazine provided greater control of browntop millet (90%) than isoxaflutole alone or with atrazine and atrazine plus S-metolachlor where control was 86% 20 WAP. Pooled across POST treatments, all PRE treatments containing isoxaflutole or TCM : isoxaflutole controlled rhizomatous johnsongrass better (74 to 76%) than atrazine plus S-metolachlor (67%). Corn yield following herbicide treatments ranged from 9,280 to 11,040 kg ha−1 compared with 9,110 kg ha−1 for the nontreated. Results indicate that TCM : isoxaflutole or isoxaflutole PRE is an option for use in a corn weed management program and may prolong the use of atrazine where weed resistance may be an issue. Where rhizomatous johnsongrass is a problem, TCM : isoxaflutole or isoxaflutole PRE can provide better control than atrazine plus S-metolachlor PRE. Without PRE treatments, glufosinate or glyphosate was needed for season-long weed control.

En 2009 y 2010 se llevaron a cabo estudios de campo en Louisiana y Mississippi para evaluar tratamientos de herbicidas PRE que contenían isoxaflutole o una mezcla preenvasada de thiencarbazone-methyl:isoxaflutole (TCM:isoxaflutole), para el control de malezas en maíz. Los tratamientos PRE incluyeron la premezcla de TCM:isoxaflutole solo (30:80 g ia ha−1) y con atrazine (1120 g ia ha−1), isoxaflutole solo (90 g ia ha−1) y con atrazine (1120 g ia ha−1), y la premezcla de atrazine más S-metolachlor (1820 más 1410 g ia ha−1). Los tratamientos POST incluyeron glufosinate (450 g ia ha−1) o glifosato (870 g ea ha−1) aplicados cuando el maíz tenía 30 cm de altura junto con un testigo sin tratamiento POST. Todos los tratamientos PRE controlaron Echinochloa crus-galli, Ipomoea hederacea, Sorghum halepense, Amaranthus palmeri y Abutilon theophrasti de 87 a 95% 4 semanas después de la siembra (WAP), y Urochloa ramosa y Acalypha ostryifolia de 86 a 95% 8 WAP. El control de malezas mejoró a las 8 y 20 WAP cuando se aplicó cualquiera de los dos tratamientos POST. TCM: isoxaflutole más atrazine controló E.crus-galli, I. hederacea, A. palmeri y A. theophrasti al menos 90% 20 WAP, sin importar el tratamiento POST. TCM:isoxaflutole más atrazine proporcionó mejor control de U. ramosa (90%) que isoxaflutole por sí solo o con atrazine y que atrazine más S-metolachlor, en cuyo caso el control fue 86% 20 WAP. Promediando los tratamientos POST, todos los tratamientos PRE que contenían isoxaflutole o TCM:isoxaflutole, controlaron S. halepense mejor (74 a 76%) que atrazine más S-metolachlor (67%). El rendimiento del maíz después de los tratamientos con herbicida varió de 9280 a 11040 kg ha−1 en comparación con 9110 kg ha−1 para el testigo no tratado. Los resultados indican que la aplicación PRE de TCM:isoxaflutole o isoxaflutole es una opción para usar en un programa de manejo de malezas en maíz y podría prolongar el uso de atrazine donde la resistencia de la maleza puede ser un problema. En situaciones donde S. halepense es un problema, TCM:isoxaflutole o isoxaflutole aplicados PRE pueden proporcionar mejor control que atrazine más S-metolachlor PRE. Sin tratamientos PRE, se requirió glufosinate o glifosato para el control de malezas a lo largo del ciclo de cultivo.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, . 2010a. USDA-NASS Quick Stats (crops). http://quickstats.nass.usda.gov. Accessed: November 22, 2010.Google Scholar
Anonymous, . 2010b. Agricultural Chemical Usage. http://usda.mannlib.cornell.edu/MannUsda/. Accessed: November 22, 2010.Google Scholar
Anonymous, . 2010c. United States Environmental Protection Agency Fact Sheet – Thiencarbazone-methyl. http://www.epa.gov/opprd001/factsheets/thiencarbazone-methyl.pdf. Accessed: November 22, 2010.Google Scholar
Bhowmik, P. C., Kushwaha, S., and Mitra, S. 1999. Response to various weed species and corn (Zea mays) to RPA 201772. Weed Technol. 13:504509.Google Scholar
Blouin, D. C., Webster, E. P., and Bond, J. A. 2011. On the analysis of combined experiments. Weed Technol. 25:165169.Google Scholar
Carmer, S. G., Nyquist, W. E., and Walker, W. M. 1989. Least significant differences for combined analysis of experiments with two- or three-factor treatment designs. Agron. J. 81:655672.CrossRefGoogle Scholar
Chomas, A. J. and Kells, J. J. 2004. Triazine-resistant common lambsquarters (Chenopodium album) control in corn with preemergence herbicides. Weed Technol. 18:551554.Google Scholar
Culpepper, A. S., York, A. C., Batts, R. B., and Jennings, K. M. 2000. Weed management in glufosinate- and glyphosate-resistant soybean (Glycine max). Weed Technol. 14:7788.Google Scholar
Heap, I. 2010. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: November 22, 2010.Google Scholar
Johnson, W. G., Li, J., and Wait, J. D. 2003. Johnsongrass control, total nonstructural carbohydrates in rhizomes, and regrowth after application of herbicides used in herbicide-resistant corn (Zea mays). Weed Technol. 17:3641.Google Scholar
Pallett, K. E., Cramp, S. M., Little, J. P., Veerasekaran, P., Crudace, A. J., and Slater, A. E. 2001. Isoxaflutole: the background to its discovery and the basis of its herbicidal properties. Pest Manag. Sci. 57:133142.Google Scholar
Pallett, K. E., Little, J. P., Sheekey, M., and Veerasekaran, P. 1998. The mode of action of isoxaflutole I. Physiological effects, metabolism, and selectivity. Pestic. Biochem. Physiol. 62:113124.CrossRefGoogle Scholar
Philbrook, B. D. and Santel, H. J. 2007. Thiencarbazone-methyl: a new molecule for PRE and postemergence weed control in corn. Proc. North Central Weed Sci. Soc. 62:150.Google Scholar
Philbrook, B. D. and Santel, H. J. 2008. A new formulation of isoxaflutole for preemergence weed control in corn (Zea mays). Weed Sci. Soc. Am. Abstr. 48:116.Google Scholar
Robinson, J. and Bean, B. 2010. Capreno, Corvus, and Balance Flexx weed control and injury in the Texas Panhandle. Proc. South. Weed Sci. Soc. Proc. South. Weed Sci. Soc. 63:23.Google Scholar
Santel, H. J. and Philbrook, B. D. 2008. Thiencarbazone-methyl and isoxaflutole: a new herbicide premixture for preemergence weed control in corn (Zea mays). in Weed Sci. Soc. Am. Abstr. 48:117.Google Scholar
Saxton, A. M. 1998. A macro for converting mean separation output to letter groupings in Proc Mixed. Pages 12431246 in Proceedings of the 23rd SAS Users Group International Conference. 1998. Cary, NC SAS Institute.Google Scholar
Schnitker, D. D., Young, B. G., Johnson, W. G., and Loux, M. M. 2007. Implications of soil residual herbicides on the consistency of glyphosate efficacy in glyphosate-resistant corn. Proc. North Central Weed Sci. Soc. 62:145.Google Scholar
Steckel, L. E., Simmons, F. W., and Sprague, C. L. 2003. Soil factor effects on tolerance of two corn (Zea mays) hybrids to isoxaflutole plus flufenacet. Weed Technol. 17:599604.Google Scholar
Stephenson, D. O. IV, Bond, J. A., Walker, E. R., Bararpour, M. T., and Oliver, L. R. 2004. Evaluation of mesotrione in Mississippi Delta corn production. Weed Technol. 18:11111116.Google Scholar
Stephenson, D. O. IV and Scroggs, D. M. 2009. Evaluation of Balance Flexx, Capreno, Corvus, and Laudis in corn. Proc. South. Weed Sci. Soc. 62:113.Google Scholar
Vyn, J. D., Swanton, C. J., Weaver, S. E., and Sikkema, P. H. 2006. Control of Amaranthus tuberculatus var. rudis (common waterhemp) with pre and post-emergence herbicides in Zea mays L. (maize). Crop Prot. 25:10511056.Google Scholar
Watteyne, K. K., Castillo, T., Hinz, J. R., Philbrook, B., and Bloomberg, J. R. 2009. Isoxaflutole + cyprosulfamide, thiencarbazone + isoxaflutole + cyrosulfamide: performance in university corn trials. Proc. North Central Weed Sci. Soc. 64:119.Google Scholar
Wicks, G. A., Knezevic, S. Z., Barnards, M., Wilson, R. G., Klein, R. N., and Martin, A. R. 2007. Effect of planning depth and isoxaflutole rate on corn injury in Nebraska. Weed Technol. 21:642646.CrossRefGoogle Scholar
Young, B. G., Hart, S. E., and Simmons, F. W. 1999. Preemergence weed control in conventional-tillage corn (Zea mays) with RPA 201772. Weed Technol. 13:471477.CrossRefGoogle Scholar