Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T14:09:46.925Z Has data issue: false hasContentIssue false

Extreme Grain-Based Cropping Systems: When Herbicide-Free Weed Management Meets Conservation Tillage in Northern Climates

Published online by Cambridge University Press:  20 January 2017

Anne Légère*
Affiliation:
Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
Steven J. Shirtliffe
Affiliation:
Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
Anne Vanasse
Affiliation:
Département de phytologie, Université Laval, Québec, Québec, G1V 0A6, Canada
Robert H. Gulden
Affiliation:
Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
*
Corresponding author's E-mail: anne.legere@agr.gc.ca

Abstract

The challenges associated with the adoption of conservation tillage and/or low-input cropping systems, whether organic or herbicide-free, across Canada are shaped by scale, environment, and local practices. A study in eastern Canada captured the challenges of introducing low-input cropping systems in mature (20+ yr) tillage treatments in a barley/red clover/corn/soybean rotation. Each mature tillage system came with its own weed problems, but this did not affect crops such as barley and red clover, which produced similar yields across high and low input systems. However, some form of primary tillage was needed to achieve adequate weed control and yield in organic (ORG) and herbicide-free (HF) systems. The HF and ORG systems with no-till actually failed to produce a corn crop but produced soybean yields that were half or less than that for other treatments. The successful combination of conservation tillage practices and low-input systems in eastern Canada would thus appear to be crop-specific, being easier to achieve in competitive cereal crops. In western Canadian organic agriculture, tillage is practiced with low-disturbance chisel plows instead of inversion plows. However, green manure crops (summer cover crops) are often terminated with tandem discs. Both roller crimpers and mowing can successfully kill annual green manure crops such as field pea and rye, and usually result in reduced weed growth following termination. However, the lack of tillage can result in lower crop yields in wheat following green manure terminated by roller crimping compared to tillage. Challenges for no-till organic practices include perennial weed control and soil fertility. Overall, flexible crop production programs such as the former Manitoba Pesticide Free Production program and the “Agriculture raisonnéeTM” program in Québec are more likely to promote sustained environmental, economic, and social prosperity than rigid adherence to organic or no-till practices.

Los retos asociados a la adopción de la labranza de conservación y/o los sistemas de cultivos de bajos insumos, ya sean orgánicos o libres de herbicidas, a lo largo de Canadá, están determinados por la escala, el ambiente y las prácticas locales. Un estudio en el este de Canadá capturó los retos de introducir sistemas de cultivos de bajos insumos en sistemas maduros de labranza (20+ años) en una rotación cebada/trébol rojo/maíz/soya. Cada sistema maduro de labranza tuvo sus propios problemas de malezas, pero esto no afectó a cultivos como cebada y trébol rojo, los cuales produjeron rendimientos similares en los sistemas de altos y bajos insumos. Sin embargo, algunas formas de labranza primaria fueron necesarias para alcanzar los controles de malezas y rendimientos adecuados en sistemas orgánicos (ORG) y libres de herbicidas (HF). Los sistemas HF y ORG con cero-labranza fallaron en producir cosechas de maíz, aunque produjeron rendimientos de soya que fueron la mitad o menos que aquellos producidos en otros tratamientos. La combinación exitosa de prácticas de labranza de conservación y sistemas de bajos insumos en el este de Canadá pareciera ser específica al cultivo, siendo más fácil de alcanzar con cultivos tales como cereales competitivos. En la agricultura orgánica del oeste de Canadá, la labranza se realiza con arados de cinceles de baja perturbación en lugar de usar arados de inversión. Sin embargo, los cultivos para abono verde (cultivos de cobertura de verano) son generalmente terminados con discos en tándem. Tanto rodillos de cuchillas y aplanadoras como chapeadoras pueden matar exitosamente cultivos anuales para abono verde, tales como leguminosas y centeno, lo que usualmente resulta en un crecimiento reducido de las malezas después de la terminación del cultivo. Sin embargo, la ausencia de labranza puede resultar en bajos rendimientos en trigo después de la terminación del cultivo para abono verde usando rodillos en comparación con la labranza. Los retos en las prácticas orgánicas de cero-labranza incluyen el control de malezas perennes y la fertilidad del suelo. En general, programas flexibles de producción tales como el anterior programa de Manitoba para la Producción Libre de Plaguicidas y el programa “Agriculture raisonnéeTM” en Québec tienen más probabilidades de promover en forma sostenida la prosperidad ambiental, económica y social que la adhesión rígida a prácticas orgánicas o de cero-labranza.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, R. L. 2008. Diversity and no-till: keys for pest management in the U.S. Great Plains. Weed Sci. 56 :141145.Google Scholar
Anderson, R. L. 2011. Corn tolerance to weed interference varies with preceding crop. Weed Sci. 25 :486491.Google Scholar
Ashford, D. L. and Reeves, D. W. 2003. Use of a mechanical roller-crimper as an alternative kill method for cover crops. Am. J. Altern. Agric. 18 :3745.Google Scholar
Benaragama, D. 2011. Enhancing the competitive ability of oat (Avena sativa L.) cropping systems. . Saskatoon, Saskatchewan, Canada : University of Saskatchewan. 84 p.Google Scholar
Biederbeck, V. and Bouman, O. 1994. Water use by annual green manure legumes in dryland cropping systems. Agron. J. 86 :543549.Google Scholar
Blackshaw, R. E., Molnar, L. J., and Janzen, H. H. 2004. Nitrogen fertilizer timing and application method affect weed growth and competition with spring wheat. Weed Sci. 52 :614622.Google Scholar
Brandt, S. A., Zentner, R. P., Olfert, O. O., Thomas, A. G., and Malhi, S. S. 2010. Input level and crop diversity strategies to enhance sustainability of crop production and soil quality in the Northern Great Plains of North America. Pages 179200 in Malhi, S. S., Gan, Y., Schoenau, J. J., Lemke, R. L., and Liebig, M. A., eds. Recent Trends in Soil Science and Agronomy Research in the Northern Plains of North America. Trivandrum, India : Research Signpost.Google Scholar
[CAST] Council for Agricultural Science and Technology. 2012. Herbicide-Resistant Weeds Threaten Soil Conservation Gains: Finding a Balance for Soil and Farm Sustainability. Issue Paper 49. Ames, Iowa : CAST. 16 p.Google Scholar
Cantin, J., Weill, A., and Vachon, É. 2012. Systèmes de production biologique et sans intrants chimiques. Pages 7392 in Vanasse, A., ed. Les Céréales à Paille. Centre de références en agriculture et agroalimentaire du Québec. Québec, Québec, Canada : Comité céréales.Google Scholar
Carr, P. M., Anderson, R. L., Lawley, Y. E., and Miller, P. R. 2012a. Organic zero-till in the northern US Great Plains Region: opportunities and obstacles. Renew. Agric. Food Syst. 27 :1220.Google Scholar
Carr, P. M., Mäder, P., Creamer, N. G., and Beeby, J. S. 2012b. Editorial: Overview and comparison of conservation tillage practices and organic farming in Europe and North America. Renew. Agric. Food Syst. 27 :26.Google Scholar
Davis, A. S. 2010. Cover-crop roller-crimper contributes to weed management in no-till soybean. Weed Sci. 58 :300309.Google Scholar
Eilers, W., Mackay, R., Graham, L., and Lefebvre, A., eds. 2010. Environmental Sustainability of Canadian Agriculture: Agri-Environmental Indicator Report Series—Report #3. Ottawa, Ontario, Canada : Agriculture and Agri-Food Canada. 235 p.Google Scholar
Entz, M., Guilford, R., and Gulden, R. 2001. Crop yield and soil nutrient status on 14 organic farms in the eastern portion of the northern great plains. Can. J. Plant Sci. 81 :351354.Google Scholar
Ervin, D. E., Glenna, L. L., and Jussaume, R. A. Jr. 2010. Are biotechnology and sustainable agriculture compatible? Renew. Agric. Food Syst. 25 :143157.Google Scholar
Gómez, R., Liebman, M., Sundberg, D. N., and Chase, C. A. 2012. Comparison of crop management strategies involving crop genotype and weed management practices in conventional and more diverse cropping systems. Renew. Agric. Food Syst. 27 : DOI: .Google Scholar
Gulden, R. H. 2012. Long-term pesticide free production study at Carman, MB (2000). Pages 3035 in Lafond, G. and Harker, K. N., eds. Prairie Soils and Crops, Scientific Perspectives for Innovative Management. Volume 5. [Online] http://www.prairiesoilsandcrops.ca/table_of_contents.html.Google Scholar
Gulden, R. H., Lewis, D. W., Froese, J. C., Van Acker, R. C., Martens, G. B., Entz, M. H., Derksen, D. A., and Bell, L. W. 2011. The effect of rotation and in-crop weed management on the germinable weed seedbank after 10 years. Weed Sci. 59 :553561.Google Scholar
Håkansson, S. 2003. Weeds and Weed Management on Arable Land: An Ecological Approach. CABI. 274 p.Google Scholar
Harker, K. N., O'Donovan, J. T., Blackshaw, R. E., Beckie, H. J., Mallory-Smith, C., and Maxwell, B. D. 2012. Our view. Weed Sci. 60 :143144.Google Scholar
Harker, K. N., O'Donovan, J. T., Irvine, R. B., Turkington, T. K., and Clayton, G. W. 2010. Integrating cropping systems with cultural techniques augments wild oat (Avena fatua) management in barley. Weed Sci. 57 :326337.Google Scholar
Johnson, E. N., Thomas, A. G., Leeson, J. Y., Shirtliffe, S. J., and Brandt, S. A. 2011. Mechanical weed control in pulse and cereal crops: Is there a fit in large-scale western Canadian agriculture?. Pages 4558 in Cloutier, D. C. and Leblanc, M. L., eds. Physical Weed Control: Progress and Challenges. Topics in Canadian Weed Science, Volume 6. Pinawa, Manitoba, Canada : Canadian Weed Science Society.Google Scholar
Knight, J., Buhler, R., Leeson, J., and Shirtliffe, S. 2010. Classification and fertility status of organically managed fields across Saskatchewan, Canada. Can. J. Soil Sci. 90 :667678.Google Scholar
Kolb, L. N., Gallandt, E. R., and Molloy, T. 2010. Improving weed management in organic spring barley: physical weed control vs. interspecific competition. Weed Res. 50 :597605.Google Scholar
Lairon, D. 2011. Nutritional quality and safety of organic food. Pages 99110 in Lichtouse, E., Hamelin, M., Navarrete, M., and Debaeke, P., eds. Sustainable Agriculture. Volume 2.Google Scholar
Leblanc, M. L., and Cloutier, D. C. 2011. Mechanical weed control in cereal crops in Eastern Canada. Pages 3542 in Cloutier, D. C. and Leblanc, M. L., eds.Physical Weed Control: Progress and Challenges. Topics in Canadian Weed Science. Volume 6. Pinawa, Manitoba, Canada : Canadian Weed Science Society–Société Canadienne de Malherbologie.Google Scholar
Légère, A., Stevenson, F. C., and Benoit, D. L. 2011a. The selective memory of weed seedbanks after 18 years of conservation tillage. Weed Sci. 59 :98106.Google Scholar
Légère, A., Stevenson, F. C., Benoit, D. L., and Samson, N. 2005. Seedbank–plant relationships for 19 weed taxa in spring barley–red clover cropping systems. Weed Sci. 53 :640650.Google Scholar
Légère, A., Stevenson, F. C., and Vanasse, A. 2011b. A corn test crop confirms beneficial effects of crop rotation in three tillage systems. Can J. Plant Sci. 91 :943946.Google Scholar
Liebig, M. A., Tanaka, D. L., Krupinsky, J. M., Merrill, S. D., and Hanson, J. D. 2007. Dynamic cropping systems: contributions to improve agroecosystem sustainability. Agron. J. 99 :899903.Google Scholar
Liebman, M., Graef, R. L., Nettleton, D., and Cambardella, C. A. 2012. Use of legume green manures as nitrogen sources for corn production. Renew. Agric. Food Syst. 27 : 180191.Google Scholar
Macey, A. 2010. Certified Organic Production in Canada 2009. Ottawa, Ontario, Canada : Canadian Organic Growers. 9 p.Google Scholar
Mason, H., Navabi, A., Frick, B., O'Donovan, J., and Spaner, D. 2007. Cultivar and seeding rate effects on the competitive ability of spring cereals grown under organic production in northern Canada. Agron. J. 99 :11991207.Google Scholar
Mirsky, S. B., Ryan, M. R., Curran, W. S., Teasdale, J. R., Maul, J., Spargo, J. T., Moyer, J., Grantham, A. M., Weber, D., Way, T. R., and Camargo, G. G. 2012. Conservation tillage issues: cover crop-based organic rotational no-till grain production in the mid-Atlantic region, USA. Renew. Agric. and Food Sys. 27 :3140.Google Scholar
Mortensen, D. A., Egan, J. F., Maxwell, B. D., Ryan, M. R., and Smith, R. G. 2012. Navigating a critical juncture for sustainable weed management. BioScience 62 :7584.Google Scholar
Nazarko, O. M., Van Acker, R. C., Entz, M. H., Schoofs, A., and Martens, G. 2003. Pesticide free production of field crops: results of an on-farm pilot project. Agron. J. 95 :12621273.Google Scholar
Nazarko, O. M., Van Acker, R. C., Entz, M. H., Schoofs, A., and Martens, G. 2004. Pesticide free production: characteristics of farms and farmers participating in a pesticide reduction pilot project in Manitoba, Canada. Renew. Agric. Food Syst. 19 :414.Google Scholar
Nord, E., Curran, W., Mortensen, D., Mirsky, S., and Jones, B. 2011. Integrating multiple tactics for managing weeds in high residue no-till soybean. Agron. J. 103 :15421551.Google Scholar
O'Donovan, J. T., Turkington, T. K., Edney, M. J., Juskiw, P. E., McKenzie, R. H., Harker, K. N., Clayton, G. W., Lafond, G. P., Grant, C. A., Brandt, S., Johnson, E. N., May, W. E., and Smith, E. 2012. Effect of seeding date and seeding rate on malting barley production in western Canada. Can. J. Plant Sci. 92 :321330.Google Scholar
Peigné, J., Ball, B. C., Roger-Estrade, J., and David, C. 2007. Is conservation tillage suitable for organic farming? Soil Use Manag. 23 :129144.Google Scholar
Première Moisson. 2012. Artisans–Partners. Moulins de Soulanges. http://www.premieremoisson.com/en/quality/artisan-partners/moulins-de-soulanges. Accessed: April 1, 2012.Google Scholar
Sahm, H., Sanders, J., Nieberg, H., Behrens, G., Kuhnert, H., Strohm, R., and Hamm, U. 2012. Reversion from organic to conventional agriculture: a review. Renew. Agric. Food Syst. DOI: .Google Scholar
Schoofs, A., Entz, M. H., Van Acker, R. C., Thiessen Martens, J. R., and Derksen, D. A. 2005. Agronomic performance of pesticide free production under two crop rotations. Renew. Agric. Food Syst. 20 :91100.Google Scholar
Shirtliffe, S. J. and Johnson, E. N. 2012. Progress towards no-till organic weed control in western Canada. Renew. Agric. Food Syst. 27 :6067.Google Scholar
Shirtliffe, S. and Knight, J. D. 2003. Saskatchewan organic on-farm research. Part I: Farm survey and establishment of on-farm research infrastructure. Regina, Saskatchewan: Saskatchewan Agriculture, Food and Rural Revitalization, Agriculture Development Fund.Google Scholar
Teasdale, J. R. and Mohler, C. L. 2000. The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci. 48 :385392.Google Scholar
Townley-Smith, L., Slinkard, A., Bailey, L., Biederbeck, V., and Rice, W. 1993. Productivity, water use and nitrogen fixation of annual-legume green-manure crops in the dark brown soil zone of Saskatchewan. Can. J. Plant Sci. 73 :139148.Google Scholar
Vaisman, I., Entz, M. H., Flaten, D. N., and Gulden, R. H. 2011. Blade roller–green manure interactions on nitrogen dynamics, weeds, and organic wheat. Agron. J. 103 :879889.Google Scholar
Welsh, R. 2010. Sustainable agriculture systems in a resource-limited future. Renew. Agric. Food Syst. 25 :8384.Google Scholar
Winter, C. K. 2012. Pesticide residues in imported, organic, and “suspect” fruits and vegetables. J. Agric. Food Chem. 60 :44254429.Google Scholar