Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T13:08:55.116Z Has data issue: false hasContentIssue false

Fertilizer and Fluazifop-P Inputs for Winter Bentgrass- (Agrostis hyemalis) Infested Lowbush Blueberry Fields

Published online by Cambridge University Press:  20 January 2017

Nathan S. Boyd*
Affiliation:
Gulf Coast Research and Education Center, University of Florida, 14625 CR 672, Wimauma, FL 33598
Scott White
Affiliation:
Department of Plant Agriculture, 50 Stone Rd. East, University of Guelph, Guelph, Ontario N1G 2W1 Canada
Kailang Rao
Affiliation:
Dalhousie Agriculture Campus, 62 Cumming Dr., Truro, Nova Scotia, B2N 5E3, Canada
*
Corresponding author's E-mail: nsboyd@ufl.edu.

Abstract

Winter bentgrass is a common, shallow-rooted perennial weed of lowbush blueberry fields. This unique production system is typically managed on a biannual cycle with blueberry shoot growth and floral bud development occurring in the first year (vegetative year) and berries harvested in the second year (crop year). An experiment was conducted in two commercial blueberry fields to determine the impact of 0, 143, or 286 kg ha−1 of 14–18–10 fertilizer applied in the vegetative year, and fluazifop-P applications in the vegetative, crop, or both years of the biannual production cycle, on winter bentgrass and blueberry growth and yield. Fluazifop-P tended to reduce winter bentgrass biomass at both sites and the vegetative year-herbicide applications had a greater impact on winter bentgrass ground cover than crop-year applications. Total weed biomass following fluazifop-P applications was reduced in the vegetative year but not the crop year due to an increase in broadleaf weed biomass. Grass biomass tended to increase with fertility inputs in the vegetative year. In all years and sites, the application of fertilizers without herbicides increased grass biomass compared to the use of fertilizers combined with herbicides. Blueberry floral bud numbers per stem, flowers per stem, and berry yield tended to increase with vegetative year applications of fluazifop-P, although differences were not significant. These data indicate that winter bentgrass management is best achieved with herbicide applications in the vegetative year and this might result in yield increases, especially if broadleaf weeds also are adequately controlled.

Agrostis hyemalis es una maleza perenne de raíces superficiales común en campos de arándano de porte bajo. Este sistema de producción es manejado típicamente en un ciclo bienal, con el crecimiento de la parte aérea del arándano y el desarrollo de las yemas florales ocurriendo en el primer año (año vegetativo) y con la cosecha de bayas en el segundo año (año de cosecha). Se realizó un experimento en dos campos comerciales de arándano para determinar el impacto de aplicaciones de fertilizante 14-18-10 a 0, 143, ó 286 kg ha−1 en el año vegetativo, y de aplicaciones de fluazifop-P en los años vegetativo, cosecha y ambos del ciclo bienal de producción, sobre el crecimiento de A. hyemalis y el crecimiento y rendimiento del arándano. Fluazifop-P tendió a reducir la biomasa de A. hyemalis en ambos sitios y las aplicaciones de herbicida en el año vegetativo tuvieron un mayor impacto en la cobertura del suelo de A. hyemalis que las aplicaciones en el año de cosecha. La biomasa total de las malezas después de las aplicaciones de fluazifop-P se redujo en el año vegetativo pero no en el año de cosecha debido al aumento en la biomasa de malezas de hoja ancha. En todos los años y sitios, la aplicación de fertilizantes sin herbicidas incrementó la biomasa de malezas gramíneas al compararse con el uso de fertilizantes en combinación con herbicidas. El número de yemas florales del arándano, las flores por tallo, y el rendimiento de bayas tendió a incrementar con las aplicaciones de fluazifop-P en el año vegetativo, aunque las diferencias no fueron significativas. Estos datos indican que el manejo de A. hyemalis se alcanza mejor con aplicaciones de herbicidas en el año vegetativo y esto podría resultar en aumentos en el rendimiento, especialmente si las malezas de hoja ancha son adecuadamente controladas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous (2005) Crop Profile for Lowbush Blueberry in Canada. Ottawa, Ontario, Canada: Canada Pesticide Risk Reduction Program, Pest Management Center. 52 pGoogle Scholar
Anonymous (2012) Wild Blueberry Fact Sheet C.4.2.0. Wild Blueberry IPM Weed Management guide. Fredericton, New Brunswick, Canada: Department of Agriculture, Aquaculture, and Fisheries. 26 pGoogle Scholar
Barker, WG, Collins, WB (1963) Growth and development of the lowbush blueberry: apical abortion. Can J Bot 41:13191324 Google Scholar
Boyd, NS, White, S (2009) Impact of wild blueberry harvesters on weed seed dispersal within and between fields. Weed Sci 57:541546 Google Scholar
Burgess, P (2002) Efficacy and Crop Phytotoxicity of Several Herbicides on Commercial Wild Blueberries (Vaccinium angustifolium Ait.) and introduced living mulches. . Truro, Nova Scotia, Canada: Dalhousie University. 57 pGoogle Scholar
Cathcart, RJ, Chandler, K, Swanton, CJ (2004) Fertilizer nitrogen rate and the response of weeds to herbicides. Weed Sci 52:291296 CrossRefGoogle Scholar
Eaton, LJ (1994) Long-term effects of herbicide and fertilizers on lowbush blueberry growth and production. Can J Plant Sci 74:341345 Google Scholar
Eaton, LJ, Glen, RW, Wylie, JD (2004) Efficient mowing for pruning wild blueberry fields. Small Fruits Rev 3:123131 CrossRefGoogle Scholar
Evans, PS (1977) Comparative root morphology of some pasture grasses and clovers. N Z J Agric Res 20:331335 CrossRefGoogle Scholar
Glass, VM, Percival, DC (2000) Challenges facing the pollination and fertilization of the lowbush blueberry. Fruit Var J 54:4447 Google Scholar
Hughes, AD (2012) An Ecological Study on Red Sorrel (Rumex acetosella L.) in Wild Blueberry Fields in Nova Scotia. . Truro, Nova Scotia, Canada: Dalhousie University, 71 pGoogle Scholar
Ismail, AA (1974) Terbacil and fertility effects on yield of lowbush blueberry. HortScience 9:457 CrossRefGoogle Scholar
Jensen, KIN (1985) Weed control in lowbush blueberries in Eastern Canada. Acta Hortic 165: 259265 Google Scholar
Jensen, KIN, Benjamin, SA, Hainstock, MH (2003) Using Fluazifop-P (Fusilade II/Venture) in Lowbush Blueberry. Kentville, Nova Scotia, Canada: Agriculture and Agrifood Canada. 3 pGoogle Scholar
Jensen, KIN, Hainstock, MH (2000) Grasses of Lowbush Blueberry Fields: 3. Rough Hair Grass (Agrostis hyemalis = scabra Willd.). Kentville, Nova Scotia, Canada: Agriculture and Agrifood Canada. 2 pGoogle Scholar
Jensen, KIN, Yarborough, DE (2004) An overview of weed management in the wild lowbush blueberry—past and present. Small Fruits Rev 3:229255 Google Scholar
Kennedy, KJ, Boyd, NS, Nams, VO (2010) Hexazinone and fertilizer impacts on sheep sorrel (Rumex acetosella L.) in wild blueberry. Weed Sci 58:317322 Google Scholar
Kennedy, KJ, Boyd, NS, Nams, VO, Olson, AR (2011) The impacts of fertilizer and hexazinone on sheep sorrel (Rumex acetosella) growth patterns in lowbush blueberry fields. Weed Sci 59:335340 Google Scholar
McCarty, MK, Scifres, CJ (1968) Smooth bromegrass response to herbicides as affected by time of application in relation to nitrogen fertilization. Weed Sci 16:443446 CrossRefGoogle Scholar
McCully, KV, Sampson, MG, and Watson, AK (1991) Weed survey of Nova Scotia lowbush blueberry (Vaccinium angustifolium) fields. Weed Sci 39:180185 CrossRefGoogle Scholar
Mithila, J, Swanton, CJ, Blackshaw, RE, Cathcart, RJ, Hall, JC (2008) Physiological basis for reduced glyphosate efficacy on weeds grown under low soil nitrogen. Weed Sci 56:1217 CrossRefGoogle Scholar
Penney, BG, McRae, KB (2000) Herbicidal weed control and crop-year NPK fertilization improves lowbush blueberry (Vaccinium angustifolium Ait.) production. Can J Plant Sci 80:351361 Google Scholar
Percival, D, Sanderson, K (2004) Main and interactive effects of vegetative-year applications of niteogen, phosphorous, and potassium fertilizers on the wild blueberry. Small Fruits Rev 3:105121 CrossRefGoogle Scholar
Rayment, AF (1965) The response of native stands of lowbush blueberry in Newfoundland to nitrogen, phosphorus and potassium fertilizers. Can J Plant Sci 45:145152 Google Scholar
Smagula, JM, Ismail, AA (1981) Effects of fertilizer application, preceded by terbacil, on growth, leaf nutrient concentration, and yield of the lowbush blueberry, Vaccinium angustifolium Ait. Can J Plant Sci 61:961964 Google Scholar
Stevens, OA (1932) The number and weight of seeds produced by weeds. Am J Bot 19:784794.Google Scholar
Sullivan, WM, Jiang, Z, Hull, RJ (2000) Root morphology and its relationship with nitrate uptake in Kentucky bluegrass. Crop Sci 40:765772 Google Scholar
Trevett, MF (1972) A Second Approximation of Leaf Analysis Standards for Lowbush Blueberry. Research in the Life Sciences. Orono, ME: Maine Agricultural Experiment Station. 19:1516 Google Scholar
Wood, GW (2004) The wild blueberry industry—past. Small Fruits Rev 3:1118 Google Scholar
Yarborough, DE, Hanchar, JJ, Skinner, SP, Ismail, AA (1986) Weed response, yield, and economics of Velpar and nitrogen use in lowbush blueberry production. Weed Sci 34:723729 Google Scholar
Yarborough, DE, Ismail, AA (1985) Hexazinone on weeds and on lowbush blueberry growth and yield. HortScience 20:406407 Google Scholar