Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T10:30:30.750Z Has data issue: false hasContentIssue false

Field Dissipation of Sulfentrazone and Pendimethalin in Colorado

Published online by Cambridge University Press:  20 January 2017

Dale L. Shaner*
Affiliation:
Water Management Research, Agricultural Research Service, USDA, 2150 Centre Avenue, Building D, Fort Collins, CO 80526
*
Corresponding author's E-mail: dale.shaner@ars.usda.gov.

Abstract

Pendimethalin and sulfentrazone are applied PRE in sunflower to control many grasses and broadleaf weeds. These herbicides have quite different physicochemical properties. Pendimethalin has a high carbon-referenced sediment partition coefficient (Koc)(17,200 L kg−1), with a low leaching potential, whereas sulfentrazone has a low Koc (43 L kg−1), with a high leaching potential. A 2-yr study was conducted to determine the dissipation of these two herbicides applied to a loamy sand soil. Pendimethalin dissipated in two phases, an initial rapid loss between application and 3 to 5 d after application (DAT) and then a slower rate of dissipation. The first, rapid phase was likely due to volatilization of the herbicide from the soil surface. Pendimethalin dissipated at a similar rate for the slower phase in 2008 and 2010 (time to 50% dissipation [DT50] was 43 d and 39 d, respectively). The dissipation of sulfentrazone, unlike pendimethalin, was not biphasic. The DT50 for sulfentrazone was different between the 2 yr (30 d and 14 d in 2008 and 2010, respectively). Pendimethalin remained primarily in the top 7.5 cm of the soil column, whereas sulfentrazone leached to at least 30 cm. The leaching of sulfentrazone depended on the timing of irrigation or precipitation after application. The more rapid loss of sulfentrazone in the top 30 cm of the soil column in 2010 could have been partially due to the herbicide leaching below the 30 cm depth that was sampled.

En girasol, se aplica pendimethalin y sulfentrazone PRE para el control de muchas malezas gramíneas y de hoja ancha. Estos herbicidas tiene propiedades físico-químicas muy diferentes. Pendimethalin tiene un alto coeficiente de partición con referencia a carbon (KOC) (17,200 L kg−1), con un potencial de lixiviación bajo, mientras que sulfentrazone tiene bajo KOC (43 L kg−1), con alto potencial de lixiviación. Se realizó un estudio de 2 años para determinar la disipación de estos dos herbicidas al ser aplicados a un suelo franco-arenoso. Pendimethalin se disipó en dos fases, una pérdida inicial rápida entre aplicaciones y 3 a 5 días después de la aplicación (DAT) y después una tasa de disipación más lenta. La primera fase rápida se debió probablemente a la volatilización del herbicida en la superficie del suelo. Pendimethalin se disipó a una tasa similar durante la fase lenta en 2008 y 2010 (tiempo para la disipación del 50% [DT50] fue 43 d y 39 d, respectivamente). A diferencia de pendimethalin, la disipación de sulfentrazone no fue bifásica. La DT50 para el sulfentrazone fue diferente entre los 2 años (30 d y 14 d en 2008 y 2010, respectivamente). Pendimethalin permaneció principalmente en los 7.5 cm superficiales de la columna de suelo, mientras que sulfentrazone se lixivió a al menos 30 cm. La lixiviación de sulfentrazone dependió del momento de irrigación o precipitación después de la aplicación. La pérdida más rápida de sulfentrazone en los 30 cm superiores de la columna de suelo en 2010 podría deberse parcialmente a la lixiviación del herbicida a profundidades mayores a los 30 cm muestreados.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2011. Agricultural Chemical Use Database. Washington, DC : National Agricultural Statistics Service (NASS). http://www.nass.usda.gov/QuickStats/index2.jsp. Accessed: November 15, 2011.Google Scholar
Barrett, M. R. and Lavy, T. L. 1983. Effects of soil water content on pendimethalin dissipation. J. Environ. Qual. 12 :504508.Google Scholar
Bausch, W. A., Trout, T., and Buchleiter, G. 2011. Evapotranspiration adjustments for deficit-irrigated corn using canopy temperature: a concept. Irrig. Drain. 60 :682693.CrossRefGoogle Scholar
Bernards, M. L., Gaussoin, R. E., Klein, R. N., Knezevic, S. Z., Lyon, D. J., Sandell, L. D., Wilson, R. G., Shea, P. J., and Ogg, C. L. 2011. Guide for Weed Management in Nebraska. Lincoln, NE : Board of Regents University of Nebraska-Lincoln. 117 p.Google Scholar
Chopra, I., Kumari, B., and Sharma, S. K. 2010. Evaluation of leaching behavior of pendimethalin in sandy loam soil. Environ. Monit. Assess. 160 :123126.Google Scholar
Grey, T. L., Vencill, W. K., Mantripagada, N., and Culpepper, A. S. 2007. Residual herbicide dissipation from soil covered with low-density polyethylene mulch or left bare. Weed Sci. 55 :638643.CrossRefGoogle Scholar
Grey, T. L., Walker, R. H., Wehtje, G. R., and Hancock, H. G. 1997. Sulfentrazone adsorption and mobility as affected by soil and pH. Weed Sci. 45 :733738.Google Scholar
Lin, H. T., Chen, S. W., Shen, C. J., and Chu, C. 2007. Dissipation of pendimethalin in the garlic (Allium sativum L.) under subtropical condition. Bull. Environ. Contam. Toxicol. 79 :8486.Google Scholar
Martinez, C. O., Silva, C.M.M.S., Fay, E. F., Abakerli, R. B., Main, A.H.N., and Durrant, L. R. 2010. Microbial degradation of sulfentrazone in a Brazilian Rhodic Hapludox soil. Braz. J. Microbiol. 41 :209217.Google Scholar
Meyer, R., Belshe, D., Falk, J., Patten, S., and O'Brien, D. 2009. High Plains Sunflower Production Handbook. Manhattan, KS : Kansas State University. http://www.oznet.ksu.edu. Accessed November 15, 2011.Google Scholar
Ohmes, G. A. and Mueller, T. C. 1999. Liquid chromatographic determination of sulfentrazone in soil. J. AOAC Int. 82 :12141216.Google Scholar
Ohmes, G. A. and Mueller, T. C. 2007. Sulfentrazone adsorption and mobility in surface soil of the Southern United States. Weed Technol. 21 :796800.CrossRefGoogle Scholar
Ohmes, G. A., Hays, R. M., and Mueller, T. C. 2000. Sulfentrazone dissipation in a Tennessee soil. Weed Technol. 14 :100105.Google Scholar
Pekarek, R. A., Garvey, P. A., Monks, D. W., Jennings, K. M., and MacRae, A. W. 2010. Sulfentrazone carryover to vegetables and cotton. Weed Technol. 24 :2024.CrossRefGoogle Scholar
Reddy, K. N. and Locke, M. A. 1998. Sulfentrazone sorption, desorption and mineralization in soils from two tillage systems. Weed Sci. 46 :494500.Google Scholar
Savage, K. E. and Jordan, T. N. 1980. Persistence of three dinitroaniline herbicides on the soil surface. Weed Sci. 28 :105110.CrossRefGoogle Scholar
Senseman, S. A. 2007. Herbicide Handbook. 9th ed. Lawrence, KS : WSSA. 458 p.Google Scholar
Shaner, D. L., Farahani, H. J., and Buchleiter, G. W. 2008. Predicting and mapping herbicide-soil partition coefficients for EPTC, metribuzin and metolachlor on three Colorado fields. Weed Sci. 56 :133139.Google Scholar
Simmons, L. D. and Derr, J. F. 2007. Pendimethalin movement through pine bark compared to field soil. Weed Technol. 21 :873876.Google Scholar
Smith, A. E., Aubin, A. J., and McIntosh, T. C. 1995. Field persistence studies with emulsifiable concentrate and granular formulations of the herbicide pendimethalin in Saskatchewan. J. Agric. Food Chem. 43 :29882991.Google Scholar
Szmigielski, A. M., Schoenau, J. J., Johnson, E. N., Holm, F. A., Sapsford, K. L., and Liu, J. 2009. Development of a laboratory bioassay and effect of soil properties on sulfentrazone phytotoxicity in soil. Weed Technol. 23 :486491.Google Scholar
Walker, A. and Bond, W. 1977. Persistence of the herbicide AC 92, 553, N-(1-ethylpropyl)-2, 6 dinitro-2, 4-xylidine, in soils. Pestic. Sci. 8 :359365.CrossRefGoogle Scholar
Weber, J. B. 1990. Behavior of dinitroaniline herbicides in soils. Weed Technol. 4 :394405.CrossRefGoogle Scholar