Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T22:02:08.301Z Has data issue: false hasContentIssue false

Glyphosate-Resistant Russian-thistle (Salsola tragus) Identified in Montana and Washington

Published online by Cambridge University Press:  05 April 2017

Vipan Kumar
Affiliation:
Postdoctoral Research Associate and Associate Professor, Montana State University-Bozeman, Southern Agricultural Research Center, Huntley, MT 59037
John F. Spring
Affiliation:
Graduate Student, Professor, and Associate Professor, Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164
Prashant Jha*
Affiliation:
Postdoctoral Research Associate and Associate Professor, Montana State University-Bozeman, Southern Agricultural Research Center, Huntley, MT 59037
Drew J. Lyon
Affiliation:
Graduate Student, Professor, and Associate Professor, Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164
Ian C. Burke
Affiliation:
Graduate Student, Professor, and Associate Professor, Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164
*
*Corresponding author’s E-mail: pjha@montana.edu

Abstract

Two putative glyphosate-resistant (GR) Russian-thistle accessions were collected from fallow fields (wheat-fallow rotation): one from Choteau County, MT (MT-R), and a second from Columbia County, WA (WA-R) in summer/fall of 2015. Greenhouse and outdoor/field whole-plant dose-response studies were conducted to confirm and characterize the levels of glyphosate resistance in these GR accessions relative to known glyphosate-susceptible accessions (MT-S and WA-S from MT and WA, respectively). Based on GR50 values of the progeny plants, the MT-R accession exhibited 4.5-fold and 5.9-fold resistance to glyphosate relative to the MT-S accession under greenhouse and outdoor conditions, respectively. The WA-R accession showed 3.0- to 5.0-fold resistance relative to the WA-S accession in greenhouse experiments, and 1.9- to 7.5-fold resistance in multi-site field experiments. In a separate greenhouse study on alternative POST herbicides to control GR Russian-thistle, bicyclopyrone plus bromoxynil, bromoxynil plus fluroxypyr, bromoxynil plus pyrasulfotole, bromoxynil plus MCPA, paraquat alone, paraquat plus metribuzin, saflufenacil alone, saflufenacil plus 2,4-D, and 2,4-D plus bromoxynil plus fluroxypyr provided effective control (≥95%) and shoot dry weight reduction (up to 98%) of GR accessions. This research confirms the first global case of field-evolved GR Russian-thistle. Best management practices (BMPs); including alternative, effective herbicide programs (based on multiple mechanisms of action highlighted in this study) need immediate implementation to prevent further spread of GR or evolution of multiple HR Russian-thistle populations in this region.

Dos accesiones de Salsola tragus con resistencia putativa a glyphosate (GR) fueron colectadas en campos en barbecho (rotación trigo−barbecho): una proveniente del condado Choteau, Montana (MT−R), y la otra proveniente del condado Columbia, Washington (WA−R), en el verano/otoño de 2015. Se realizaron estudios de respuesta a dosis con plantas enteras en invernadero y campo para confirmar y caracterizar los niveles de resistencia a glyphosate en estas accesiones GR en relación a accesiones con susceptibilidad a glyphosate conocida (MT−S y WA−S originarias de Montana y Washington, respectivamente). Con base en los valores de GR50 de las plantas progenie, la accesión MT−R presentó una resistencia a glyphosate que fue 4.5 y 5.9 veces mayor en relación a la accesión MT−S, en condiciones de invernadero y de campo, respectivamente. La accesión WA−R mostró de 3.0 a 5.0 veces mayor resistencia en relación a la accesión WA−S en experimentos de invernadero, y 1.9 a 7.5 veces en experimentos de campo realizados en múltiples sitios. En un estudio de invernadero adicional, se evaluaron los herbicidas POST alternativos para el control de S. tragus bicyclopyrone plus bromoxynil, bromoxynil plus fluroxypyr, bromoxynil plus pyrasulfotole, bromoxynil plus MCPA, paraquat solo, paraquat plus metribuzin, saflufenacil solo, saflufenacil plus 2,4−D, y 2,4−D plus bromoxynil plus fluroxypyr, los cuales brindaron control efectivo (≥95%) y redujeron el peso seco de la parte aérea (hasta 98%) de las accesiones GR. Esta investigación confirma el primer caso a nivel global de S. tragus con evolución GR a nivel de campo. Las mejores prácticas de manejo (BMPs), incluyendo programas de herbicidas alternativos efectivos (con base en múltiples mecanismos de acción señalados en este estudio), necesitan ser implementadas inmediatamente para prevenir la dispersión de GR o la evolución de poblaciones de S. tragus con resistencia múltiple en esta región.

Type
Weed Management-Major Crops
Copyright
© Weed Science Society of America, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Scott McElroy, Auburn University.

References

Literature Cited

Adkins, SW, Tanpipat, S, Swarbrick, JT, Boersma, M (1998) Influence of environmental factors on glyphosate efficacy. Weed Res 38:129138 Google Scholar
Baker, DV, Withrow, JR, Brown, CS, Beck, KG (2010) Tumbling: use of diffuse knapweed (Centaurea diffusa) to examine an understudied dispersal mechanism. Invasive Plant Sci Manage 3:301309 Google Scholar
Beckie, HJ, Francis, A (2009) The biology of Canadian weeds. 65. Salsola tragus L. (Updated). Can J Plant Sci 89:775789 Google Scholar
Coburn, C, Kniss, AR (2016) Methods for confirming resistance to different herbicide modes of action: does one size fit all? Proc Western Soc Weed Sci 69:65 Google Scholar
Ge, X, d’Avignon, DA, Ackerman, JJ, Duncan, B, Spaur, MB, Sammons, RD (2011) Glyphosate‐resistant horseweed made sensitive to glyphosate: low‐temperature suppression of glyphosate vacuolar sequestration revealed by 31P NMR. Pest Manag Sci 67:12151221 CrossRefGoogle Scholar
Godar, AS, Stahlman, PW, Jugulam, M, Dille, JA (2015) Glyphosate-resistant kochia (Kochia scoparia) in Kansas. EPSPS gene copy number in relation to resistance levels 63:587595 Google Scholar
Guttieri, MJ, Eberlein, CV, Mallory-Smith, CA, Thill, DC, Hoffman, DL (1992) DNA sequence variation in Domain A of the acetolactate synthase genes of herbicide-resistant and -susceptible weed biotypes. Weed Sci 40:670676 Google Scholar
Harbour, JD, Messersmith, CG, Ramsdale, BK (2003) Surfactants affect herbicides on kochia (Kochia scoparia) and Russian thistle (Salsola iberica). Weed Sci 51:430434 CrossRefGoogle Scholar
Heap, I (2016). The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed July 14, 2016Google Scholar
Holm, L, Doll, J, Holm, E, Pancho, J, Herberger, J (1997) Salsola kali L. Pages 708721 in Proceedings of World Weeds: Natural Histories and Distribution. New York: J Wiley Google Scholar
Jha, P, Kumar, V, Lim, CA (2015) Variable response of kochia [Kochia scoparia (L.) Schrad.] to auxinic herbicides dicamba and fluroxypyr in Montana. Can J Plant Sci 95:965972 CrossRefGoogle Scholar
Jha, P., Kumar, V, Lim, CA (2016) Herbicide resistance in cereal production systems of the US Great Plains. Indian J Weed Sci 48:112116 Google Scholar
Knezevic, SZ, Streibig, JC, Ritz, C (2007) Utilizing R software package for dose–response studies: the concept and data analysis. Weed Technol 21:840848 Google Scholar
Kudsk, P, Jensen, PK (1988) Prediction of herbicide activity. Weed Res 28:473478 Google Scholar
Kumar, V, Jha, P (2015) Influence of herbicides applied postharvest in wheat stubble on control, fecundity, and progeny fitness of Kochia scoparia in the US Great Plains. Crop Prot 71:144149 Google Scholar
Kumar, V, Jha, P, Giacomini, D, Westra, EP, Westra, P (2015) Molecular basis of evolved resistance to glyphosate and acetolactate synthase-inhibitor herbicides in kochia (Kochia scoparia) accessions from Montana. Weed Sci 63:758769 Google Scholar
Kumar, V, Jha, P, Reichard, N (2014) Occurrence and characterization of kochia (Kochia scoparia) accessions with resistance to glyphosate in Montana. Weed Technol 28:122130 Google Scholar
Leeson, JY, Thomas, AG, Hall, LM, Brenzil, C, Andrews, T, Brown, KR, Van Acker, RC (2005). Prairie Weed Surveys of Cereal, Oilseed and Pulse Crops from the 1970s to the 2000s. Saskatoon, Saskatchewan, Canada: Agriculture and Agri-Food Canada Weed Survey Series Publ 05–1. 395 pGoogle Scholar
Moretti, ML, Hanson, BD, Hembree, KJ, Shrestha, A (2013) Glyphosate resistance is more variable than paraquat resistance in a multiple-resistant hairy fleabane (Conyza bonariensis) population. Weed Sci 61:396402 Google Scholar
Nguyen, TH, Malone, JM, Boutsalis, P, Shirley, N, Preston, C (2016) Temperature influences the level of glyphosate resistance in barnyardgrass (Echinochloa colona). Pest Manag Sci 72:10311039 CrossRefGoogle ScholarPubMed
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60:3162 Google Scholar
Ogg, AG Jr, Dawson, JH (1984) Time of emergence of eight weed species. Weed Sci 32:327335 CrossRefGoogle Scholar
Orloff, SB, Cudney, DW, Elmore, CL, DiTomaso, JM (2008). Russian Thistle. University of California Agricultural and Natural Resources Publication No 7486. Davis, CA: University of CaliforniaGoogle Scholar
Peterson, DE (1999) The impact of herbicide-resistant weeds on Kansas agriculture. Weed Technol 13:632635 Google Scholar
Ritz, C, Baty, F, Streibig, JC, Gerhard, D (2015) Dose-response analysis using R. PLOS ONE 10(12):e0146021. doi: 10.1371/journal.pone.0146021 CrossRefGoogle ScholarPubMed
Saari, LL, Cotterman, JC, Smith, WF, Primiani, MM (1992) Sulfonylurea herbicide resistance in common chickweed, perennial ryegrass and Russian thistle. Pestic Biochem Physiol 42:110118 Google Scholar
Schillinger, WF (2007) Ecology and control of Russian thistle (Salsola iberica) after spring wheat harvest. Weed Sci 55:381385 Google Scholar
Schillinger, WF, Young, FL (2000) Soil water use and growth of Russian thistle after wheat harvest. Agron J 92:167172 Google Scholar
Seefeldt, SS, Jensen, JE, Fuerst, EP (1995) Log-logistic analysis of herbicide dose–response relationships. Weed Technol 9:218227 CrossRefGoogle Scholar
Stallings, GP, Thill, DC, Mallory-Smith, CA (1994) Sulfonylurea resistant Russian thistle (Salsola iberica) survey in Washington State. Weed Technol 8:258264 Google Scholar
Stallings, GP, Thill, DC, Mallory-Smith, CA, Lass, LW (1995) Plant movement and seed dispersal of Russian thistle (Salsola iberica). Weed Sci 43:6369 Google Scholar
Vila‐Aiub, MM, Gundel, PE, Yu, Q, Powles, SB (2013) Glyphosate resistance in Sorghum halepense and Lolium rigidum is reduced at suboptimal growing temperatures. Pest Manag Sci 69:228232 Google Scholar
Warwick, SI, Sauder, CA, Beckie, HJ (2010) Acetolactate synthase (ALS) target-site mutations in ALS inhibitor-resistant Russian thistle (Salsola tragus). Weed Sci 58:244251 Google Scholar
Young, FL (1986) Russian thistle (Salsola iberica) growth and development in wheat (Triticum aestivum). Weed Sci 34:901905 Google Scholar
Young, FL (1988) Effect of Russian thistle (Salsola iberica) interference on spring wheat (Triticum aestivum). Weed Sci 36:594598 Google Scholar
Young, FL, Whitesides, RE (1987) Efficacy of postharvest herbicides on Russian thistle (Salsola iberica) control and seed germination. Weed Sci 35:554559 CrossRefGoogle Scholar
Young, FL, Yenish, JP, Launchbaugh, GK, McGrew, LL, Alldredge, JR (2008) Postharvest control of Russian thistle (Salsola tragus) with a reduced herbicide applicator in the Pacific Northwest. Weed Technol 22:156159 Google Scholar