Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T17:16:42.905Z Has data issue: false hasContentIssue false

Honeyvine Milkweed (Cynanchum laeve) Control in Plasticulture Bell Pepper Production

Published online by Cambridge University Press:  20 January 2017

Joseph G. Masabni*
Affiliation:
University of Kentucky Research and Education Center, Princeton, KY 42003
S. Alan Walters
Affiliation:
Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
Bryan G. Young
Affiliation:
Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
Timothy Coolong
Affiliation:
Department of Horticulture, N-318 Agricultural Sciences Center, University of Kentucky, Lexington, KY 40546
*
Corresponding author's E-mail: jmasabni@ag.tamu.edu

Abstract

A 2-yr study was conducted to evaluate bell pepper response and honeyvine milkweed control from PRE herbicides, clomazone and trifluralin, applied under polyethylene mulch. Clomazone (0.8 and 1.4 kg ai ha−1) and trifluralin (0.7 and 1.1 kg ai ha−1) were applied alone or in combination. Herbicides were applied after beds were made and before polyethylene mulch was laid, followed by transplanting pepper within hours of herbicide application. In both years, initial bleaching of lower leaves was observed; the injury was observed in some treatments, but not others. Honeyvine milkweed, growing in the planting hole, exhibited significant bleaching and stunting in most herbicide treatments. Both clomazone and trifluralin resulted in season-long honeyvine milkweed control in both years. However, the use of clomazone and trifluralin together for control of honeyvine milkweed does not seem justified due to the potential for herbicide antagonism, as indicated in this study. The total number and fresh weight of harvested bell pepper were not affected by the herbicides or rates. All herbicide treatments resulted in about twice the yield (average of 8.8 kg) of the hand-weeded control (4.6 kg) in both years. This study strongly supports the safety and effectiveness of clomazone and/or trifluralin applied pretransplant under polyethylene mulch in bell pepper production for control of honeyvine milkweed.

Se realizó un estudio de dos años de duración para evaluar la respuesta del pimentón y el control de Cynanchum laeve con los herbicidas PRE clomazone y trifluralin, aplicados bajo cobertura plástica (polyethylene). Clomazone (0.8 y 1.4 kg ai ha−1) y trifluralin (0.7 y 1.1 kg ai ha−1) fueron aplicados solos o en combinación. Los herbicidas se aplicaron después de hacer las camas de siembra y antes de poner la cobertura plástica, y unas horas después se trasplantó el pimentón. En ambos años, inicialmente se observó un blanqueamiento de las hojas inferiores del pimentón, en algunos de los tratamientos, pero no en otros. Las plantas de C. laeve que estaban creciendo en el orificio de siembra, exhibieron significativos niveles de blanqueamiento y retrasos en el crecimiento en la mayoría de tratamientos de herbicidas. Tanto clomazone como trifluralin resultaron en control de C. laeve que duró a lo largo de toda la temporada en ambos años. Sin embargo, el uso conjunto de clomazone y trifluralin para el control de C. laeve parece que no se justifica debido al potencial de antagonismo, como se indicó en este estudio. El número total y el peso fresco de los pimentones cosechados no fue afectado por los herbicidas o las dosis. Todos los tratamientos de herbicidas resultaron en cerca del doble del rendimiento (promedio de 8.8 kg) en comparación con el testigo con deshierba manual (4.6 kg) en ambos años. Este estudio sustenta el uso seguro y efectivo de clomazone y/o trifluralin aplicados pre-trasplante bajo cobertura plástica en la producción de pimentón para el control de C. laeve.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2011a. Command 3ME herbicide product label. FMC Publication No. ID324040. Philadelphia, PA FMC. 19 p.Google Scholar
Anonymous. 2011b. Treflan 4EC herbicide product label. Helena Publication No. ID7HD002. Collierville, TN Helena. 15 p.Google Scholar
Bangarwa, S. K., Norsworthy, J. K., and Gbur, E. E. 2009. Cover crop and herbicide combinations for weed control in polyethylene-mulched bell pepper. HortTechnology. 19:405410.CrossRefGoogle Scholar
Bessin, R. 2008. Vegetable Production Guide for Commercial Growers, 2007–2008. Lexington, KY University of Kentucky College of Agriculture, University of Kentucky Press Cooperative Extension Service ID-36.Google Scholar
Bonanno, A. R. 1996. Weed management in plasticulture. HortTechnology. 6:186189.CrossRefGoogle Scholar
Colby, S. R. 1967. Calculating synergistic and antagonistic responses of herbicide combinations. Weeds. 15:2022.CrossRefGoogle Scholar
Duniway, J. M. 2002. Status of chemical alternatives of methyl bromide for preplant fumigation in soil. Phytopathology. 92:13371343.CrossRefGoogle Scholar
Grey, T. L., Bridges, D. C., and NeSmith, D. S. 2001. Response of several transplanted pepper cultivars to variable rates and methods of application of clomazone. HortScience. 36:104106.CrossRefGoogle Scholar
Johnson, W. C. III and Mullinix, B. G. Jr. 2005. Effect of herbicide application method on weed management and crop injury in transplanted cantaloupe production. Weed Technol. 19:108112.CrossRefGoogle Scholar
Lanini, W. T. and Strange, M. L. 1991. Low-input management of weeds in vegetable fields. California Agric. 45:1113.CrossRefGoogle Scholar
Monaco, T. J. and Bonanno, A. R. 1988. Herbicide evaluations in horticultural crops. Hortic. Crop. Res. Ser. 80:1180.Google Scholar
Moshier, L. J. 1980. Response of honeyvine milkweed (Ampelamus albidus) to herbicide applications. Weed Sci. 28:722724.CrossRefGoogle Scholar
Moshier, L. J., Russ, O. G., O'Conner, J. P., and Claassen, M. M. 1986. Honeyvine milkweed (Ampelamus albidus) response to foliar herbicides. Weed Sci. 34:730734.CrossRefGoogle Scholar
Motis, T. N., Locascio, S. J., Gilreath, J. P., and Stall, W. M. 2003. Season-long interferences of yellow nutsedge (Cyperus esculentus) with polyethylene-mulched bell pepper (Capsicum annuum). Weed Technol. 17:543549.CrossRefGoogle Scholar
Norsworthy, J. K., Oliveria, M. J., Jha, P., Malik, M., Buckelew, J. K., Jennings, K. M., and Monks, D. W. 2008. Palmer amaranth and large crabgrass growth with plasticulture-grown bell pepper. Weed Technol. 22:296302.CrossRefGoogle Scholar
Robinson, D. E., McNaughton, K., and Soltani, N. 2008. Weed management in transplanted bell pepper (Capsicum annuum) with pretransplant tank mixes of sulfentrazone, S-metolachlor, and dimethenamid-p. HortScience. 43:14921494.CrossRefGoogle Scholar
Smith, R. F. and Daugovish, O. 2012. UC IPM Pest Management Guidelines: Peppers—Herbicide Treatment Table. UC ANR Publication 3460. http://www.ipm.ucdavis.edu/PMG/r604700311.html. Accessed September 24, 2013.Google Scholar
Tweedy, M. J. and Kapusta, G. 1995. Nicosulfuron and primisulfuron eradicate rhizome johnsongrass (Sorghum halepense) in corn (Zea mays) in three years. Weed Technol. 9:748753.CrossRefGoogle Scholar
U.S. Environmental Protection Agency. 2008. Ozone Layer Depletion. Regulatory Programs: The Phase-out of Methyl Bromide based on Montreal Protocol on Substances that Deplete the Ozone Layer (Protocol) and the Clean Air Act (CAA). http://www.epa.gov/ozone/mbr/index.html. Accessed September 24, 2012.Google Scholar
Waterer, D. R. 2000. Effect of soil mulches and herbicides on production economics of warm-season vegetable crops in a cool climate. HortTechnology. 10:154159.CrossRefGoogle Scholar
Weston, L. A. and Jones, R. T. 1990. Tolerance of transplanted bell peppers (Capsicum annuum) to clomazone and diethatyl applied preemergent. Appl. Agric. Res. 5:1316.Google Scholar