Article contents
Impact of reduced rates of 2,4-D and glyphosate on sweetpotato growth and yield
Published online by Cambridge University Press: 08 June 2020
Abstract
Commercialization of 2,4-D–tolerant crops is a major concern for sweetpotato producers because of potential 2,4-D drift that can cause severe crop injury and yield reduction. A field study was initiated in 2014 and repeated in 2015 to assess impacts of reduced rates of 2,4-D, glyphosate, or a combination of 2,4-D with glyphosate on sweetpotato. In one study, 2,4-D and glyphosate were applied alone and in combination at 1/10, 1/100, 1/250, 1/500, 1/750, and 1/1,000 of anticipated field use rates (1.05 kg ha−1 for 2,4-D and 1.12 kg ha−1 for glyphosate) to ‘Beauregard’ sweetpotato at storage root formation (10 days after transplanting [DAP]). In a separate study, all these treatments were applied to ‘Beauregard’ sweetpotato at storage root development (30 DAP). Injury with 2,4-D alone or in combination with glyphosate was generally equal or greater than with glyphosate applied alone at equivalent herbicide rates, indicating that injury is attributable mostly to 2,4-D in the combination. There was a quadratic increase in crop injury and quadratic decrease in crop yield (with respect to most yield grades) with increased rate of 2,4-D applied alone or in combination with glyphosate applied at storage root development. However, neither the results of this relationship nor of the significance of herbicide rate were observed on crop injury or sweetpotato yield when herbicide application occurred at storage root formation, with a few exceptions. In general, crop injury and yield reduction were greatest at the highest rate (1/10×) of 2,4-D applied alone or in combination with glyphosate, although injury observed at lower rates was also a concern after initial observation by sweetpotato producers. However, in some cases, yield reduction of U.S. no.1 and marketable grades was also observed after application of 1/250×, 1/100×, or 1/10× rates of 2,4-D alone or with glyphosate when applied at storage root development.
Keywords
- Type
- Research Article
- Information
- Copyright
- © Weed Science Society of America, 2020
Footnotes
Associate Editor: Steve Fennimore, University of California, Davis
References
- 1
- Cited by