Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T16:33:40.639Z Has data issue: false hasContentIssue false

Increased Carrier Volume Improves Preemergence Control of Rigid Ryegrass (Lolium rigidum) in Zero-Tillage Seeding Systems

Published online by Cambridge University Press:  20 January 2017

Catherine P. D. Borger*
Affiliation:
Department of Agriculture and Food Western Australia, P.O. Box 432 Merredin, WA Australia 6415
Glen P. Riethmuller
Affiliation:
Department of Agriculture and Food Western Australia, P.O. Box 432 Merredin, WA Australia 6415
Michael Ashworth
Affiliation:
Australian Herbicide Resistance Initiative, University of Western Australia, 35 Stirling Hwy Crawley, WA Australia 6009
David Minkey
Affiliation:
Western Australian No-Tillage Farmers Association, University of Western Australia, 35 Stirling Hwy Crawley, WA Australia 6009
Abul Hashem
Affiliation:
Department of Agriculture and Food Western Australia, P.O. Box 483 Northam, WA Australia 6401
Stephen B. Powles
Affiliation:
Australian Herbicide Resistance Initiative, University of Western Australia, 35 Stirling Hwy Crawley, WA Australia 6009
*
Corresponding author's E-mail: catherine.borger@agric.wa.gov.au

Abstract

PRE herbicides are less effective in the zero-tillage system because of increased residual crop stubble and reduced soil incorporation. However, since weeds are not physically controlled in the zero-tillage system, reliance on efficacy of PRE herbicides is increased. This research investigated the impact of carrier volume and droplet size on the performance of PRE herbicides (in wheat crops at four sites in 2010) to improve herbicide efficacy in conditions of high stubble biomass in zero-tillage systems. Increasing carrier volume from 30 to 150 L ha−1 increased spray coverage on water-sensitive paper from an average of 5 to 32%. Average control of rigid ryegrass by trifluralin (at Cunderdin and Merredin sites) and trifluralin or pyroxasulfone (at Wickepin and Esperance sites) improved from 53 to 78% with increasing carrier volume. Use of ASABE Medium droplet size improved spray coverage compared with ASABE Extremely Coarse droplet size, but did not affect herbicide performance. It is clear that increased carrier volume improves rigid ryegrass weed control for nonwater-soluble (trifluralin) and water-soluble (pyroxasulfone) PRE herbicides. Western Australian growers often use low carrier volumes to reduce time of spray application or because sufficient high-quality water is not available, but the advantages of improved weed control justifies the use of a high carrier volume in areas of high weed density.

Los herbicidas PRE son menos efectivos en sistemas de labranza cero debido a su menor incorporación en el suelo y la mayor cantidad de residuos de cultivo. Sin embargo, como las malezas no son controladas físicamente en los sistemas de labranza cero, la dependencia en la eficacia de herbicidas PRE es mayor. Se investigó el impacto del volumen de aplicación y el tamaño de gota en el desempeño de los herbicidas PRE (en cultivos de trigo en cuatro localidades en 2010) para mejorar la eficacia de herbicidas en condiciones de alta biomasa de residuos de cultivo en sistemas de labranza cero. El incrementar el volumen de aplicación de 30 a 150 L ha−1 aumentó la cobertura de la aplicación, medida con papel sensible al agua, de 5 a 32%. El control promedio de Lolium rigidum con trifluralin (en las localidades Cunderdin y Merredin) y trifluralin o pyroxasulfone (en Wickepin y Esperance) mejoró de 53 a 78% al incrementar el volumen de aplicación. El uso de gotas ASABE de tamaño mediano mejoró la cobertura de la aspersión al compararse con gotas ASABE extremadamente grandes, pero no afectó el desempeño del herbicida. Está claro que el incrementar el volumen de aplicación mejoró el control de L. rigidum con herbicidas PRE insolubles en agua (trifluralin) y solubles en agua (pyroxasulfone). Los productores del Oeste de Australia usan frecuentemente volúmenes bajos de aplicación para reducir el tiempo de aplicación o porque no hay suficiente agua de alta calidad disponible, pero las ventajas del mayor control de malezas justifica el uso de altos volúmenes de aplicación en áreas con alta densidad de malezas.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

American Society of Agricultural and Biological Engineers. 2009. Spray nozzle classification by droplet spectra. St. Joseph, MI ASABE Standards. Pp. 13.Google Scholar
Anderson, N. H., Hall, D. J., and Western, N. M. 1983. The role of dynamic surface tension in spray retention. Page 576 in Proceedings of the 10th International Congress of Plant Protection.Google Scholar
Ashworth, M., Desbiolles, J., and Tola, E. 2010. Disc Seeding in Zero-Tillage Farming Systems. A Review of Technology and Paddock Issues. Northam, Western Australia Western Australian No-Tillage Farmers Association. Pp. 1223.Google Scholar
Australian Pesticides and Veterinary Medicines Authority. 2011. Public Release Summary on the Evaluation of the New Active Pyroxasulfone in the Product Sakura® 850 WG Herbicide. http://www.apvma.gov.au/registration/assessment/docs/prs_pyroxasulfone.pdf. Accessed March 9, 2013.Google Scholar
Bayer CropScience. 2011. Sakura® 850 WG Herbicide. http://www.sakuraherbicide.com.au/resources/uploads/DataSheet/file9711.pdf. Accessed April 12, 2012.Google Scholar
Boerboom, C. M. and Wyse, D. L. 1988. Influence of glyphosate concentration on glyphosate absorption and translocation in canada thistle (Cirsium arvense). Weed Sci. 36:291295.CrossRefGoogle Scholar
Bureau of Meteorology. 2011. Climate Statistics for Australian Locations. http://www.bom.gov.au/climate/data/. Accessed October 12, 2011.Google Scholar
Chan, K. Y. and Pratley, J. E. 1998. Soil structure decline—Can the trend be reversed?. Pages 129163 in Pratley, J. and Robertson, A., eds. Agriculture and the Environmental Imperative. Sydney, Australia CSIRO Publishing.Google Scholar
Corning, P. S. and Pratley, J. E. 1987. Tillage, new directions in Australian agriculture. Melbourne, Australia Inkata Press. Pp. 438440.Google Scholar
[CSBP] CSBP Ltd. 2010. CSBP Soil and Plant Testing Laboratory: Methods. Perth, Australia CSBP. Pp. 111.Google Scholar
Dear, B. S., Sandral, G. A., and Wilson, B.C.D. 2006. Tolerance of perennial pasture grass seedlings to pre- and postemergent grass herbicides. Aust. J. Exp. Agric. 46:637644.Google Scholar
D'Emden, F. H., Llewellyn, R. S., and Burton, M. P. 2008. Factors influencing adoption of conservation tillage in Australian cropping regions. Aust. J. Agric. Resour. Econ. 52:169182.Google Scholar
D'Emden, F.H.D. and Llewellyn, R. S. 2006. No-tillage adoption decisions in southern Australian cropping and the role of weed management. Aust. J. Exp. Agric. 46:563569.Google Scholar
Fox, R. D., Derksen, R. C., Cooper, J. A., Krause, C. R., and Ozkan, H. E. 2003. Visual and image system measurement of spray deposits using water-sensitive paper. Appl. Eng. Agric. 19:549552.Google Scholar
Hoffman, W. C. and Hewitt, A. J. 2005. Comparison of three imaging systems for water-sensitive papers. Appl. Eng. Agric. 21:961964.Google Scholar
Hollist, R. L. and Foy, C. L. 1971. Trifluralin interaction with soil constituents. Weed Sci. 19:1116.Google Scholar
Jensen, P. K., Jorgensen, L. N., and Kirknel, E. 2001. Biological efficacy of herbicides and fungicides applied with low-drift and twin-fluid nozzles. Crop Prot. 20:5764.Google Scholar
Kenga, E. 1980. Predicted bio-concentration factors and soil sorption co-efficients of pesticides and other chemicals. Ecotoxicol. Environ. Saf. 4:2638.Google Scholar
Knoche, M. 1994. Effect of droplet size and carrier volume on performance of foliage-applied herbicides. Crop Prot. 13:163178.CrossRefGoogle Scholar
Kudsk, P. 1988. The influence of volume rate on the activity of glyphosate and difenzoquat assessed by a parallel-line assay technique. Pestic. Sci. 24:2129.Google Scholar
Lamari, L. 2008. Assess 2.0 Image Analysis Software for Disease Quantification. Saint Paul, MN American Phytopathological Society. Pp. 1125.Google Scholar
Lewis, K. and Green, A. 2013. The Pesticides Properties Database: Trifluralin. http://sitem.herts.ac.uk/aeru/iupac/667.htm. Accessed March 9, 2013.Google Scholar
Lignowski, E. M. and Scott, E. G. 1972. Effect of trifluralin on mitosis. Weed Sci. 20:267270.CrossRefGoogle Scholar
Merrett, C. R. 1982. The influence of form of deposit on the phytotoxicity of MCPA, paraquat, and glyphosate applied as individual drops. Ann. Appl. Biol. 101:527532.CrossRefGoogle Scholar
Noel, S. 2002. Soil Groups of Western Australia: A Simple Guide to the Main Soils of Western Australia. Perth Department of Agriculture, Government of Western Australia. Pp. 1122.Google Scholar
Nordbo, E. 1992. Effects of nozzle size, travel speed and air assistance on deposition on artificial vertical and horizontal targets in laboratory experiments. Crop Prot. 11:272278.Google Scholar
Nufarm Australia. 2009. Triflur Xcel® herbicide product label. Nufarm Australia Limited. http://search.nufarm.com.au/label/nufarm/TRIFLUR_XCEL_24108080.pdf. Accessed August 8, 2012.Google Scholar
Owen, M. J., Walsh, M. J., Llewellyn, R. S., and Powles, S. B. 2007. Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Aust. J. Agr. Res. 58:711718.Google Scholar
Parochetti, J. V. and Hein, E. R. 1973. Volatility and photodecomposition of trifluralin, benefin and nitralin. Weed Sci. 21:469473.Google Scholar
Permin, O., Odgaard, P., and Kirknel, E. 1985. Deposition of spray liquid in a plant population. Pages 99117 in Proceedings of the Second Danish Plant Protection Conference. Weeds. Sladelse, Denmark Institut fur Ukrudsbekæmpelse.Google Scholar
Rahman, A. and Ashford, R. 1970. Selective action of trifluralin for control of green foxtail in wheat. Weed Sci. 18:754759.Google Scholar
Salyani, M. and Whitney, J. D. 1990. Ground speed effect on spray deposition inside citrus trees. T. ASAE. 33:361366.Google Scholar
Spillman, J. J. 1984. Spray impaction, retention and adhesion: an introduction to basic characteristics. Pestic. Sci. 15:97106.Google Scholar
Tennant, D. 2000. Crop water use. Pages 5568 in Anderson, W. K. and Garlinge, J. R., eds. The Wheat Book: Principles and Practice. Perth Agriculture Western Australia.Google Scholar
Thériault, R., Salyani, M., and Panneton, B. 2001. Spray distribution and recovery in citrus application with a recycling sprayer. T. ASAE. 44:10831088.Google Scholar
Travis, J. W., Skroch, W. A., and Sutton, T. B. 1987. Effects of travel speed, application volume, and nozzle arrangement on deposition and distribution of pesticides in apple trees. Plant Dis. 71:606612.Google Scholar
VSN International. 2011. GenStat for Windows. 14th ed. Hemel Hempstead, UK VSN International. Pp. 1360.Google Scholar
Walsh, M. J., Fowler, T. M., Crowe, B., Ambe, T., and Powles, S. B. 2011. The potential for pyroxasulfone to selectively control resistant and susceptible rigid ryegrass (Lolium rigidum) biotypes in Australian grain crop production systems. Weed Technol. 25:3037.Google Scholar
Whitney, J. D., Salyani, M., Churchill, D. B., Knapp, J. L., Whiteside, J. O., and Littell, R. C. 1989. A field investigation to examine the effects of sprayer type, ground speed, and volume rate on spray deposition in Florida citrus. J. Agric. Eng. Res. 42:275283.Google Scholar