Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-29T07:21:07.024Z Has data issue: false hasContentIssue false

Influence of Carrier Water pH, Hardness, Foliar Fertilizer, and Ammonium Sulfate on Mesotrione Efficacy

Published online by Cambridge University Press:  20 January 2017

Pratap Devkota*
Affiliation:
Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054
Douglas J. Spaunhorst
Affiliation:
Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054
William G. Johnson
Affiliation:
Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054
*
Corresponding author's E-mail: pdevkota@purdue.edu

Abstract

Carrier water pH, hardness, coapplied foliar fertilizer, water conditioning agents, and plant height are critical considerations for optimum herbicide performance. Field studies were conducted to evaluate the effect of carrier water pH (4, 6.5, and 9) and zinc (Zn) or manganese (Mn) foliar fertilizer on mesotrione for horseweed and Palmer amaranth control. Additionally, effect of carrier water pH and foliar fertilizer was evaluated on 7.5-, 12.5-, and 17.5-cm tall horseweed. Greenhouse treatments consisted of carrier water pH and foliar fertilizer (Zn, Mn, or without fertilizer); or water hardness (0 to 1,000 mg L−1) in the presence or absence of ammonium sulfate (AMS) for mesotrione control of giant ragweed, horseweed, and Palmer amaranth. Mesotrione activity was greater on horseweed with carrier water pH 6.5 compared to pH 4 or 9. Coapplied Zn fertilizer reduced mesotrione activity on Palmer amaranth in the field study in 2014 and horseweed in the greenhouse study. Mesotrione efficacy was greatly influenced by horseweed height. Percent control ranged from 96 to 99%, 75 to 89%, or 61 to 64% with mesotrione applied on 7.5-, 12.5-, or 17.5-cm tall horseweed, respectively, and results were similar for plant height and dry weight reduction. Increasing carrier water hardness from 0 to 1,000 mg L−1 reduced mesotrione efficacy 28, 18, and 18% (or greater) on giant ragweed, horseweed, and Palmer amaranth, respectively. The addition of AMS enhanced mesotrione efficacy 9, 6, or 9% (or greater) for giant ragweed, horseweed, and Palmer amaranth control, respectively. Mesotrione should be applied at near neutral carrier water pH, hardness < 200 mg L−1, and with AMS for achieving optimum weed control.

El pH y la dureza del agua, fertilizantes foliares co-aplicados, agentes acondicionadores del agua, y la altura de planta son consideraciones críticas para el desempeño óptimo de los herbicidas. Se realizaron estudios de campo para evaluar el efecto del pH del agua (4, 6.5, y 9), y fertilizantes foliares de zinc (Zn) o manganese (Mn) sobre la actividad de mesotrione para el control de Conyza canadensis y Amaranthus palmeri. Adicionalmente, el efecto del pH del agua y del fertilizante foliar fue evaluado en plantas de C. canadensis de 7.5, 12.5, y 17.5 cm de altura. Los tratamientos de invernadero consistieron de pH del agua y fertilizantes foliar (Zn, Mn, o sin fertilizante); o dureza del agua (0 a 1,000 mg L−1) en presencia o ausencia de ammonium sulfate (AMS) para el control con mesotrione de Ambrosia trifida, C. canadensis, y A. palmeri. La actividad de mesotrione fue mayor sobre C. canadensis con agua pH 6.5 al compararse con pH 4 ó 9. Fertilizante de Zn co-aplicado redujo la actividad de mesotrione sobre A. palmeri en el estudio de campo en 2014 y sobre C. canadensis en el estudio de invernadero. La eficacia de mesotrione fue altamente influenciada por la altura de C. canadensis. El porcentaje de control varió de 96 a 99%, 75 a 89%, o 61 a 64% con mesotrione aplicado sobre plantas de C. canadensis de 7.5, 12.5, ó 17.5 cm de altura, respectivamente, y los resultados fueron similares para la reducción de altura de planta y peso seco. El incrementar la dureza del agua de 0 a 1,000 mg L−1 redujo la eficacia de mesotrione 28, 18, y 18% (o más) sobre A. trifida, C. canadensis, y A. palmeri, respectivamente. La adición de AMS mejoró la eficacia de mesotrione 9, 6, ó 9% (o más) para el control de A. trifida, C. canadensis, y A. palmeri, respectivamente. Mesotrione debería ser aplicado en agua con pH neutral, dureza <200 mg L−1, y con AMS para alcanzar un control de malezas óptimo.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Kevin Bradley, University of Missouri.

References

Literature Cited

Abouziena, HF, Elmergawi, RA, Sharma, S, Omar, AA, Singh, M (2009) Zinc antagonizes glyphosate on yellow nutsedge (Cyperus esculentus). Weed Sci 57: 1620 Google Scholar
Altland, J (2015) Water Quality affects Herbicide Efficacy. http://oregonstate.edu/dept/nursery-weeds/feature_articles/spray_tank/spray_tank.htm. Accessed January 5, 2016Google Scholar
Buhler, DD, Burnside, OC (1983) Effect of water quality, carrier volume, and acid on glyphosate phytotoxicity. Weed Sci 31: 163169 CrossRefGoogle Scholar
Deer, HM, Beard, R (2001) Effect of water pH on the chemical stability of pesticides. http://extension.usu.edu/files/publications/factsheet/AG_Pesticides_14.pdf. Accessed January 10, 2016Google Scholar
Devkota, P, Whitford, F, Johnson, WG (2016) Influence of spray solution temperature and holding duration on weed control with premixed glyphosate and dicamba formulation. Weed Technol 30: 116122 Google Scholar
Fielding, RJ, Stoller, EW (1990) Effects of additives on efficacy, uptake, and translocation of chlorimuron ethyl-ester. Weed Technol 4: 264271 Google Scholar
Goddard, MJR, Willis, JB, Askew, SD (2010) Application placement and relative humidity affects smooth crabgrass and tall fescue response to mesotrione. Weed Sci 58: 6772 Google Scholar
Green, JM, Cahill, WR (2003) Enhancing the biological activity of nicosulfuron with pH adjusters. Weed Technol 17: 338345 Google Scholar
Green, JM, Hale, T (2005) Increasing the biological activity of weak acid herbicides by increasing and decreasing the pH of the spray mixture. J ASTM Int 2: 6271 Google Scholar
Hager, AG, Wax, LM, Bollero, GA, Stoller, EW (2003) Influence of diphenylether herbicide application rate and timing on common waterhemp (Amaranthus rudis) control in soybean (Glycine max). Weed Technol 17: 1420 Google Scholar
Hanson, CL, Rieck, CE (1976) The effect of iron and aluminum on glyphosate toxicity. Proc South Weed Sci Soc 29: 49 Google Scholar
Hartzler, B (2001) Role of AMS with Glyphosate Products. http://www.weeds.iastate.edu/mgmt/2001/ams.htm. Accessed December 10, 2015Google Scholar
Johnson, BC, Young, BG (2002) Influence of temperature and relative humidity on the foliar activity of mesotrione. Weed Sci 50: 157161 Google Scholar
Keeling, JW, Henniger, CG, Abernathy, JR (1989) Horseweed (Conyza canadensis) control in conservation tillage cotton (Gossypium hirsutum). Weed Technol 3: 399401 Google Scholar
Kent, LM, Wills, GD, Shaw, DR (1991) Influence of ammonium sulfate, imazapyr, temperature, and relative humidity on the absorption and translocation of imazethapyr. Weed Sci 39: 412416 Google Scholar
Lee, SD, Oliver, LR (1982) Efficacy of acifluorfen on broadleaf weeds. Times and methods for application. Weed Sci 30: 520526 Google Scholar
Mellendorf, TG, Young, JM, Matthews, JM, Young, BG (2013) Influence of plant height and glyphosate on saflufenacil efficacy on glyphosate-resistant horseweed (Conyza canadensis). Weed Technol 27: 463467 Google Scholar
Mueller, TC, Main, CL, Thompson, MA, Steckel, LE (2006) Comparison of glyphosate salts (isopropylamine, diammonium, and potassium) and calcium and magnesium concentrations on the control of various weeds. Weed Technol 20: 164171 Google Scholar
Nalewaja, JD, Matysiak, R (1991) Salt antagonism of glyphosate. Weed Sci 39: 622628 CrossRefGoogle Scholar
Nalewaja, JD, Matysiak, R (1992a) 2,4-D and salt combinations affect glyphosate phytotoxicity. Weed Technol 6: 322327 Google Scholar
Nalewaja, JD, Matysiak, R (1992b) Species differ in response to adjuvants with glyphosate. Weed Technol 6: 561566 Google Scholar
Nalewaja, JD, Matysiak, R (1993) Spray carrier salts affect herbicide toxicity to kochia (Kochia scoparia). Weed Technol 7: 154158 Google Scholar
Nalewaja, JD, Woznica, Z, Matysiak, R (1991) 2,4-D amine antagonism by salts. Weed Technol 5: 873880 CrossRefGoogle Scholar
O'sullivan, PA, O'Donovan, JT, Hamman, WM (1981) Influence of non-ionic surfactants, ammonium sulfate, and nozzle effects on glyphosate efficacy. Can J Plant Sci 61: 391400 Google Scholar
Ramsdale, BK, Messersmith, CG, Nalewaja, JD (2003) Spray volume, formulation, ammonium sulfate, and nozzle effects on glyphosate efficacy. Weed Technol 17: 589598 CrossRefGoogle Scholar
Roskamp, JM, Chahal, GS, Johnson, WG (2013a) The effect of cations and ammonium sulfate on the efficacy of dicamba and 2,4-D. Weed Technol 27: 7277 Google Scholar
Roskamp, J, Turco, R, Bischoff, M, Johnson, WG (2013b) The influence of carrier water pH and hardness on saflufenacil efficacy and solubility. Weed Technol 27: 527533 Google Scholar
Sandberg, CL, Meggitt, WF, Penner, D (1978) Influence of spray volume and calcium on glyphosate phytotoxicity. Proc North Cent Weed Control Conf 31: 31 Google Scholar
Sarmah, AK, Sabadie, J (2002) Hydrolysis of sulfonylurea herbicides in soils and aqueous solutions: a review. J Agric Food Chem 50: 62536265 Google Scholar
Seaman, AJ, Riedl, H (1986) Preventing Decomposition of Agricultural Chemicals by Alkaline Hydrolysis in the Spray Tank. http://www.nysaes.cornell.edu/pubs/fls/OCRPDF/118.pdf. Accessed December 25, 2015Google Scholar
Shilling, DG, Haller, WT (1989) Interaction effects of diluent pH and calcium content of glyphosate activity on Panicum repens L. (torpedo grass). Weed Res 29: 441448 Google Scholar
Stahlman, PW, Phillips, WM (1979) Effects of water quality and spray volume on glyphosate phytotoxicity. Weed Sci 27: 3841 Google Scholar
Thelen, KD, Jackson, EP, Penner, D (1995) The basis for the hard-water antagonism of glyphosate activity. Weed Sci 43: 541548 CrossRefGoogle Scholar
Wanamarta, G, Penner, D, Kells, JJ (1989) The basis of bentazon antagonism on sethoxydim absorption and activity. Weed Sci 37: 400404 CrossRefGoogle Scholar
Wills, GD, McWhorter, CG (1985) Effect of inorganic salts on the toxicity and translocation of glyphosate and MSMA in purple nutsedge (Cyperus rotundus). Weed Sci 33: 755761 Google Scholar
Xie, L, Li, D, Fang, W, Howatt, K (2011) Urea ammonium nitrate additive and raking improved mesotrione efficacy on creeping bentgrass. Hort Technol 21: 4145 Google Scholar
Zollinger, RK, Nalewaja, JD, Peterson, DE, Young, BG (2010) Effect of hard water and ammonium sulfate on weak acid herbicide activity. J ASTM Int 7:1–10CrossRefGoogle Scholar