Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T07:15:03.323Z Has data issue: false hasContentIssue false

Influence of Deep Tillage, a Rye Cover Crop, and Various Soybean Production Systems on Palmer Amaranth Emergence in Soybean

Published online by Cambridge University Press:  20 January 2017

Justin D. DeVore*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Kristofor R. Brye
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Plant Sciences 115, Fayetteville, AR 72701
*
Corresponding author's E-mail: jnorswor@uark.edu

Abstract

Glyphosate-resistant Palmer amaranth has become a major threat to soybean production in the southern United States. Arkansas soybean producers rely heavily on glyphosate-resistant soybean; hence, an alternative solution for controlling resistant Palmer amaranth is needed. A field experiment was conducted at Marianna, AR, during 2009 and 2010 in which soybean production systems were tested in combination with deep tillage and no tillage to determine the impact on Palmer amaranth emergence. To establish a baseline population, 250,000 glyphosate-resistant Palmer amaranth seeds were placed in a 1-m2 area in the middle of each plot and incorporated in the soil, and emergence was evaluated five times during the season. Production systems of full-season soybean with a rye cover crop or soybean double-cropped with wheat, which had high amounts of plant residue on the soil surface reduced Palmer amaranth emergence more than systems without deep tillage and a cover crop or wheat. When used in combination with deep tillage, these systems reduced Palmer amaranth emergence by 98 and 97%, respectively, in 2009 and by 73 and 82%, respectively, in 2010. Deep tillage alone caused an 81% reduction in emergence averaged over both years. Soybean double-cropped with wheat used in combination with deep tillage provided a 95% reduction in Palmer amaranth emergence over the 2-yr period. This research shows that deep tillage in combination with soybean production systems that have high amounts of residue on the soil surface are alternative means for providing a high level of control of glyphosate-resistant Palmer amaranth and could lessen the dependence on chemical weed control.

Amaranthus palmeri resistente a glyphosate se ha convertido en una gran amenaza para la producción de soya en el sur de Estados Unidos. Los productores de soya de Arkansas dependen fuertemente de soya resistente a glyphosate; por esta razón, es necesaria una solución alternativa para el control de A. palmeri resistente a glyphosate. Se realizó un experimento de campo en Marianna, AR, durante 2009 y 2010 en el cual diferentes sistemas de producción de soya fueron evaluados en combinación con labranza profunda y labranza cero, para determinar el impacto sobre la emergencia de A. palmeri. Para establecer una población como línea base, 250,000 semillas de A. palmeri resistente a glyphosate fueron puestas en una área de 1 m2 en el medio de una parcela y se incorporaron al suelo, y luego se evaluó la emergencia cinco veces durante la temporada de crecimiento. Los sistemas de producción con soya de temporada completa con centeno como cultivo de cobertura o de soya con trigo como cultivo doble, los cuales tuvieron altas cantidades de residuo vegetal sobre la superficie del suelo, redujeron la emergencia de A. palmeri más que los sistemas sin labranza profunda y sin cultivo de cobertura o trigo. Cuando se usaron en combinación con labranza profunda, estos sistemas redujeron la emergencia de A. palmeri en 98 y 97%, respectivamente, en 2009 y en 73 y 82%, respectivamente, en 2010. La labranza profunda sola causó una reducción de 81% en la emergencia al promediarse ambos años. La soya con trigo como cultivo doble, usada en combinación con la labranza profunda brindó una reducción de 95% de la emergencia de A. palmeri durante el período de 2 años del estudio. Esta investigación muestra que la labranza profunda en combinación con los sistemas de producción de soya que tienen altos niveles de residuos sobre la superficie del suelo son una alternativa para brindar una alto nivel de control de A. palmeri resistente a glyphosate y podrían disminuir la dependencia en el control químico de malezas.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amuri, N., Brye, K. R., Gbur, E. E., Oliver, D., and Kelley, J. 2010. Weed populations as affected by residue management practices in a wheat-soybean double-crop production system. Weed Sci. 58:234243.CrossRefGoogle Scholar
Anonymous. 2012. Mississippi State Budget Generator. http://www.agecon.msstate.edu/what/farm/generator/. Accessed Jan. 30, 2012.Google Scholar
Arshad, M. A., Lowery, B., and Grossman, B. 1996. Physical tests for monitoring soil quality. Pages 123141 In: Doran, J. W. and Jones, A. J., eds. Methods for accessing soil quality. Soil Science Society of America Special Publication 49. Madison, WI Soil Science Society of America.Google Scholar
Barberi, P. and Cascio, B. L. 2000. Long-term tillage and crop rotation effects on weed seedbank size and composition. Weed Res. 41:325340.CrossRefGoogle Scholar
Bensch, C. N., Horak, M. J., and Peterson, D. 2003. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci. 51:3743.CrossRefGoogle Scholar
Clark, A. J., Decker, A. M., and Meisinger, J. J. 1994. Seeding rate and kill date effects on hairy vetch–cereal rye cover crop mixtures for corn production. Agron. J. 86:10651070.Google Scholar
Creamer, N. G., Bennett, M. A., Stinner, B. R., Cardina, J., and Regnier, E. E. 1996. Mechanisms of weed suppression in cover crop–based production systems. HortScience. 31:410413.CrossRefGoogle Scholar
[CTIC] Conservation Technology Information Center. 2011. National Crop Residue Management Survey. http://www.ctic.purdue.edu/CRM/. Accessed: November 11, 2011.Google Scholar
Culpepper, A. S., Grey, T. L., Vencil, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54:620626.CrossRefGoogle Scholar
Culpepper, A. S., Webster, T. M., Sosnoskie, L. M., and York, A. C. 2010. Glyphosate-resistant Palmer amaranth in the United States. http://hdl.handle.net/10113/48979. Accessed: November 10, 2011.Google Scholar
Culpepper, A. S. and York, A. C. 1998. Weed management in glyphosate-tolerant cotton. J. Cotton Sci. 2:174185.Google Scholar
[ERS] Economic Research Service, United States Department of Agriculture. 2011. Wheat: Average price received by farmers, United States. http://www.ers.usda.gov/data/wheat/YBtable18.asp. Accessed November 29, 2011.Google Scholar
Garvey, P. V. 1999. Goosegrass (Eleusine indica) and Palmer amaranth (Amaranthus palmeri) interference in plasticulture tomato. . Raleigh, NC North Carolina State University. 101 p.Google Scholar
Harder, D. B., Sprague, C. L., and Renner, K. A. 2007. Effect of soybean row width and population on weeds, crop yield, and economic return. Weed Technol. 21:744752.CrossRefGoogle Scholar
Heap, I. 2012. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed: August 17, 2012.Google Scholar
Heatherly, L. G. 1999. Early soybean production system. Pages 103118 in Heatherly, L. G. and Hodges, H. F., eds. Soybean production in the Midsouth. Boca Raton, FL; CRC Press LLC.Google Scholar
Heatherly, L. G., Elmore, C. D., and Wesley, R. A. 1992. Weed control for soybean (Glycine max) planted in a stale or undisturbed seedbed on clay soil. Weed Technol. 6:119124.CrossRefGoogle Scholar
Jha, P. and Norsworthy, J. K. 2009a. Palmer amaranth persistence in the soil seedbank over four years. Proc. South. Weed Sci. Soc. 62:242.Google Scholar
Jha, P. and Norsworthy, J. K. 2009b. Soybean canopy and tillage effects on emergence of Palmer amaranth (Amaranthus palmeri) from a natural seed bank. Weed Sci. 57:644651.CrossRefGoogle Scholar
Jha, P., Norsworthy, J. K., Riley, M. B., Bielenberg, D. G., and Bridges, W. Jr. 2008. Acclimation of Palmer amaranth (Amaranthus palmeri) to shading. Weed Sci. 56:729734.CrossRefGoogle Scholar
Keeley, P. E., Carter, C. H., and Thullen, R. M. 1987. Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci. 35:199204.CrossRefGoogle Scholar
Kelley, J. P., Sheets, S., Mason, E., Miller, R., Milus, G., Moon, D., and Rohman, P. 2011. Wheat update 2011. http://www.agriculture.org/News/wheat_update/wheat_update_2011.pdf. Accessed November 29, 2011.Google Scholar
Klingaman, T. E. and Oliver, L. R. 1994. Palmer amaranth (Amaranthus palmeri) interference in soybean (Glycine max). Weed. Sci. 42:523527.Google Scholar
Leon, R. G. and Owen, M.D.K. 2006. Tillage systems and seed dormancy effects on common waterhemp (Amaranthus tuberculatus) seedling emergence. Weed Sci. 54:10371044.CrossRefGoogle Scholar
Liebl, R., Simmons, F. W., Wax, L. M., and Stoller, E. W. 1992. Effect of rye (Secale cerale) mulch on weed control and soil moisture in soybean (Glycine max). Weed Technol. 6:838846.CrossRefGoogle Scholar
Moore, M. J., Gillespie, T. J., and Swanton, C. J. 1994. Effect of cover crop mulches on weed emergence, weed biomass, and soybean (Glycine max) development. Weed Technol. 8:512518.CrossRefGoogle Scholar
[NASS] National Agricultural Statistics Service, United States Department of Agriculture. 2006. Agricultural Chemical Usage 2005 Field Crops Summary. http://usda.mannlib.cornell.edu/usda/nass/AgriChemUsFC//2000s/2006/AgriChemUsFC-05-17-2006.pdf. Accessed: November 14, 2011.Google Scholar
[NRCS] National Resource Conservation Service, United States Department of Agriculture. 2012. Web Soil Survey. http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx. Accessed: August 20, 2012.Google Scholar
Norsworthy, J. K. 2003. Use of soybean production surveys to determine weed management needs of South Carolina farmers. Weed Technol. 17:195201.CrossRefGoogle Scholar
Norsworthy, J. K., Oliveira, M. J., Jha, P., Malik, M., Buckelew, J. K., Jennings, K. M., and Monks, D. W. 2008. Palmer amaranth and large crabgrass growth with plasticulture-grown Capsicum annuum . Weed Technol. 22:296302.CrossRefGoogle Scholar
Popp, M. P., Keisling, T. C., Dillon, C. R., and Manning, P. M. 2001. Economic and agronomic assessment of deep tillage in soybean production on Mississippi River Valley soils. Agron. J. 93:164169.Google Scholar
Price, A. J., Balkcom, K. S., Culpepper, S. A., Kelton, J. A., Nichols, R. L., and Schomberg, H. 2011. Glyphosate-resistant Palmer amaranth: a threat to conservation tillage. J. Soil Water Conserv. 66:265275.CrossRefGoogle Scholar
Putnam, A. R. and DeFrank, J. 1983. Use of phytotoxic plant residues for selective weed control. Crop Prot. 2:173181.CrossRefGoogle Scholar
Reddy, K. N., Zablotowicz, R. M., Locke, M. A., and Koger, C. H. 2003. Cover crop, tillage, and herbicide effects on weeds, soil properties, microbial populations, and soybean yield. Weed Sci. 51:987994.CrossRefGoogle Scholar
Sainju, U. M. and Singh, B. P. 1997. Winter cover crops for sustainable agricultural systems: influence on soil properties, water quality, and crop yields. Hortscience. 32:2128.CrossRefGoogle Scholar
Shapiro, S. S. and Wilk, M. B. 1965. An analysis of variance test for normality (complete samples). Biometrika. 52:591611.CrossRefGoogle Scholar
Teasdale, J. R. 1996. Contribution of cover crops to weed management in sustainable agricultural systems. J. Prod. Agric. 9:475479.CrossRefGoogle Scholar
Webster, T. M. and MacDonald, G. E. 2001. A survey of weeds in various crops in Georgia. Weed Technol. 15:771790.CrossRefGoogle Scholar
Wesley, R. A., Smith, L. A., and Spurlock, S. R. 2001. Fall deep tillage of Tunica and Sharkey clay: residual effects on soybean yield and net returns. Bull. 1102. Mississippi State, MS Mississippi Agriculture and Forestry Experimental Station.Google Scholar
Yenish, J. P., Worsham, A. D., and York, A. C. 1996. Cover crops for herbicide replacement in no-tillage corn (Zea mays). Weed Technol. 10:815821.CrossRefGoogle Scholar