Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T08:44:47.852Z Has data issue: false hasContentIssue false

Influence of Flumioxazin Application Timing and Rate on Cotton Emergence and Yield

Published online by Cambridge University Press:  20 January 2017

Sarah Berger
Affiliation:
Department of Agronomy, University of Florida, 304 Newell Hall, Gainesville, FL 32611
Jason Ferrell*
Affiliation:
Department of Agronomy, University of Florida, 304 Newell Hall, Gainesville, FL 32611
Barry Brecke
Affiliation:
West Florida Research and Education Center, University of Florida, Milton, FL 32853
Wilson Faircloth
Affiliation:
formerly with USDA National Peanut Research Laboratory, Dawson, GA 39842
Diane Rowland
Affiliation:
Department of Agronomy, University of Florida, 304 Newell Hall, Gainesville, FL 32611
*
Corresponding author's E-mail: jferrell@ufl.edu.

Abstract

Palmer amaranth is one of the most troublesome weeds in the southeast. Significant reductions in cotton yield because of Palmer amaranth competition warrant intense control efforts consisting of both PRE and POST herbicides. Flumioxazin is a soil-active, protoporphyrinogen oxidase-inhibiting herbicide that is labeled for use in cotton 14 to 21 d before planting; however, shorter preplant application intervals could increase the duration of control from this herbicide. Flumioxazin was applied at 3 rates (0.03 and 0.06 kg ai ha−1 in 2009 and an additional rate of 0.09 kg ai ha−1 in 2010 and 2011) and 6 application timings (30, 20, 15, 10, 5, and 0 d before planting cotton). Cotton emergence, height, and yield were documented. In 2009, at the Jay and Citra, FL, sites, cotton emergence, plant height, and yield were not affected by any herbicide rate or timing. At Dawson, GA, in the same year, significant reduction in cotton stand counts were observed with application timings < 10 d before planting. Cotton height was reduced similarly at Dawson, GA, but recovered to levels equal to the control by 45 d after planting (DAP). It is believed that rainfall during cotton emergence resulted in this significant level of injury at Dawson, GA. In 2010 and 2011, at Citra, FL, cotton emergence was only reduced when 0.06 and 0.09 kg ha−1 were applied at planting. Cotton height showed a similar pattern with additional reductions in height at 0.03 kg ha−1 applied at planting and 0.09 kg ha−1 applied 5 d before planting. In 2010 and 2011, at Citra, FL, yield was reduced when 0.09 kg ha−1 flumioxazin was applied 5 d before planting and when 0.06 and 0.09 kg ha−1 were applied at planting. These results indicate that flumioxazin application intervals can be shortened with little crop impact likely to be seen at lower use rates. However, rainfall at crop emergence has the potential to significantly injure cotton and reduce yield.

Amaranthus palmeri es una de las malezas más problemáticas en el sureste. Reducciones significativas en el rendimiento del algodón producto de la competencia de A. palmeri ameritan intensos esfuerzos de control utilizando herbicidas PRE y POST. Flumioxazin es un herbicida activo en el suelo, que inhibe la enzima protoporphyrinogen oxidase y es etiquetado para su uso en algodón 14 a 21 d antes de la siembra. Sin embargo, períodos más cortos de aplicación pre siembra podrían incrementar la duración del control de este herbicida. Se aplicó flumioxazin a 3 dosis (0.03 y 0.06 kg ai ha−1 en 2009 y una dosis adicional de 0.09 kg ai ha−1 en 2010 y 2011) y en 6 momentos de aplicación (30, 20, 15, 10, 5, y 0 d antes de la siembra del algodón). La emergencia del algodón, altura, y rendimiento fueron documentados. En 2009, en los sitios Jay y Citra, FL, la emergencia del algodón, la altura de planta, y el rendimiento no fueron afectados por ninguna de las dosis o momentos de aplicación del herbicida. En Dawson, GA, en el mismo año, reducciones significativas en los conteos de algodón establecido fueron observados para los momentos de aplicación <10 d antes de la siembra. La altura del algodón fue reducida en formar similar en Dawson, GA, pero se recuperó a los mismos niveles que el testigo a 45 d después de la siembra (DAP). Se cree que la lluvia durante la emergencia del algodón resultó en este nivel de daño significativo en Dawson, GA. En 2010 y 2011, en Citra, FL, la emergencia del algodón fue reducida solamente cuando se aplicaron 0.06 y 0.09 kg ha−1 en la siembra. La altura del algodón mostró un patrón similar con reducciones adicionales en altura a 0.03 kg ha−1 aplicados en la siembra y 0.09 kg ha−1 aplicados 5 d antes de la siembra. En 2010 y 2011, en Citra, FL, el rendimiento se redujo cuando se aplicó flumioxazin a 0.09 kg ha−1 5 d antes de la siembra y cuando se aplicó 0.06 y 0.09 kg ha−1 en la siembra. Estos resultados indican que los intervalos de aplicación pre siembra de flumioxazin pueden ser reducidos con poco impacto al cultivo a dosis bajas. Sin embargo, la lluvia durante la emergencia del cultivo tiene el potencial de dañar significativamente el algodón y reducir su rendimiento.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2010. Valor herbicide label. EPA Reg. No. 59639–99; Valent Publication No. 2010-VLR-0010. Walnut Creek, CA : Valent U.S.A. Corporation.Google Scholar
Askew, S. D., Wilcut, J. W., and Crammer, J. R. 2002. Cotton (Gossypium hirsutum) and weed response to flumioxazin applied preplant and postemergence directed. Weed Technol. 16 :184190.Google Scholar
Bryson, C. T. and DeFelice, M. S. 2009. Weeds of the South. Athens, GA : The University of Georgia Press. 34 p.Google Scholar
Buchanan, G. A. and Burns, E. R. 1970. Influence of weed competition on cotton. Weed Sci. 18 :149154.Google Scholar
Burke, I. C., Schroeder, M. S., Thomas, W. E., and Wilcut, J. W. 2007. Palmer amaranth interference and seed production in peanut. Weed Technol. 21 :367371.Google Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54 :620626.CrossRefGoogle Scholar
Dobrow, M., Ferrell, J. A., Faircloth, W., MacDonald, G. E., Brecke, B., and Erickson, J. 2011. Effect of cover crop and preemergence herbicides on the control of ALS-resistant Palmer amaranth (Amaranthus palmeri) in peanut. Peanut Sci. 38 :7377.Google Scholar
Dotray, P. A., Gilbert, L. V., Siders, K. T., Russell, S. A., and Cattaneo, M. G. 2010. Peanut response to flumioxazin in the Texas high plains. Proc. South Weed Sci. Soc. 63 :24.Google Scholar
Ehleringer, J. 1983. Ecophysiology of Amaranthus palmeri, a Sonoran desert summer annual. Oecologia 57 :107112.Google Scholar
Ferrell, J. A. and Vencill, W. K. 2002. Sorption and desorption of flumioxazin to soil, clay minerals and ion-exchange resin. Pest Manag. Sci. 61 :4046.Google Scholar
Gleason, H. A. and Cronquist, A. 1991. Family Amaranthaceae, the Amaranth family. Pages 104108 in Manual of Vascular Plants of Northeastern United States and Adjacent Canada. 2nd ed. New York : New York Botanical Garden.Google Scholar
Grichar, W. J. 2008. Herbicide systems for control of horse purslane (Trianthema portulacastrum L.), smellmellon (Cucumis melo L.), and Palmer amaranth (Amaranthus palmeri S. Wats) in peanut. Peanut Sci. 35 :3842.CrossRefGoogle Scholar
Horak, M. J. and Loughin, T. M. 2000. Growth analysis of four Amaranthus species. Weed Sci. 48 :347355.Google Scholar
Keeley, P. E., Carter, C. H., and Thullen, R. J. 1987. Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci. 35 :199204.CrossRefGoogle Scholar
Main, C. L., Faircloth, J. C., Steckel, L. E., Culpepper, A. S., and York, A. C. 2012. Cotton tolerance to fomesafen applied preemergence. J. Cotton Sci. 16 :8087.Google Scholar
Morgan, G. D., Baumann, P. A., and Chandler, J. M. 2001. Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technol. 15 :408412.Google Scholar
Owen, L. N., Mueller, T. C., Main, C. L., Bond, J., and Steckel, L. E. 2011. Evaluating rates and application timings of saflufenacil for control of glyphosate-resistant horseweed (Conyza canadensis) prior to planting no-till cotton. Weed Technol. 25 :15.CrossRefGoogle Scholar
Sellers, B. A., Smeda, R. J., Johnson, W. G., Kendig, J. A., and Ellersick, M. R. 2003. Comparative growth of six Amaranthus species in Missouri. Weed Sci. 51 :329333.CrossRefGoogle Scholar
Senseman, S. A. ed. 2007. Herbicide Handbook. 9th ed. Lawrence, KS : Weed Science Society of America.Google Scholar
Swan, C. W. 2002. Rainfall as a factor impacting peanut tolerance to flumioxazin. Proc. South Weed Sci. Soc. 55 :32.Google Scholar
Webster, T. M. 2005. Weed survey—southern states. Proc. South. Weed Sci. Soc. 58 :291306.Google Scholar
Wise, A. M., Grey, T., Prostko, E., Vencill, W., and Webster, T. 2009. Establishing the geographical distribution and level of acetolactate synthase resistance of Palmer amaranth (Amaranthus palmeri) accessions in Georgia. Weed Technol. 23 :214220.CrossRefGoogle Scholar