Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T06:27:39.345Z Has data issue: false hasContentIssue false

Integrated Weed Management Systems Identified for Jointed Goatgrass (Aegilops cylindrica) in the Pacific Northwest

Published online by Cambridge University Press:  20 January 2017

Frank L. Young*
Affiliation:
USDA-ARS, Department of Crop and Soil Sciences, Washington State University, P.O. Box 646420, Pullman, WA 99164-6420
Daniel A. Ball
Affiliation:
Columbia Basin Agricultural Research Center, Oregon State University, Pendleton, OR 97801
Donn C. Thill
Affiliation:
Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID 83843
J. Richard Alldredge
Affiliation:
Department of Statistics, Washington State University, P.O. Box 643144, Pullman, WA 99164-3144
Alex G. Ogg Jr.
Affiliation:
Ten Sleep, WY 82442
Steven S. Seefeldt
Affiliation:
USDA-ARS, University of Alaska, Fairbanks, AK 99775-7200
*
Corresponding author's E-mail: youngfl@wsu.edu.

Abstract

Jointed goatgrass is an invasive winter annual grass weed that is a particular problem in the low to intermediate rainfall zones of the Pacific Northwest (PNW). For the most part, single-component research has been the focus of previous jointed goatgrass studies. In 1996, an integrated cropping systems study for the management of jointed goatgrass was initiated in Washington, Idaho, and Oregon in the traditional winter wheat (WW)–fallow (F) region of the PNW. The study evaluated eight integrated weed management (IWM) systems that included combinations of either a one-time stubble burn (B) or a no-burn (NB) treatment, a rotation of either WW–F–WW or spring wheat (SW)–F–WW, and either a standard (S) or an integrated (I) practice of planting winter wheat. This study is the first, to our knowledge, to evaluate and identify complete IWM systems for jointed goatgrass control in winter wheat. At the Idaho location, in a very low weed density, no IWM system was identified that consistently had the highest yield, reduced grain dockage, and reduced weed densities. However, successful IWM systems for jointed goatgrass management were identified as weed populations increased. At the Washington location, in a moderate population of jointed goatgrass, the best IWM system based on the above responses was the B:SW–F–WW:S system. At the Washington site, this system was better than the integrated planting system because the competitive winter wheat variety did not perform well in drought conditions during the second year of winter wheat. At the Oregon site, a location with a high weed density, the system B:SW–F–WW:I produced consistently higher grain yields, reduced grain dockage, and reduced jointed goatgrass densities. These integrated systems, if adopted by PNW growers in the wheat–fallow area, would increase farm profits by decreasing dockage, decreasing farm inputs, and reducing herbicide resistance in jointed goatgrass.

La Aegilops cylindrica Host AEGCY es un zacate invasivo anual de invierno, que representa un problema en zonas de lluvia de escasa a moderada del Pacifico Noreste (PNW). En la mayoría de los casos, el enfoque de los estudios previos acerca de Aegilops cilíndrica, ha sido la investigación de un solo componente. En 1996, un estudio integrado de sistemas de cultivo para el manejo de Aegilops cylindrica, se inició en Washington, Idaho y Oregón en la región tradicional Triticum aestivum L. de invierno (WW)–barbecho (F) en el PNW. El estudio evaluó ocho sistemas integrados de manejo de malezas (IWM) que incluyeron combinaciones de ya sea, una quema única de rastrojos (B) o sin quema (NB), o bien de una rotación de WW–F–WW o Triticum aestivum L. de primavera (SW)–F–WW y de una práctica normal (S) o una integrada (I) de siembra de Triticum aestivum L. de invierno. Este estudio es el primero en evaluar e identificar sistemas completos IWM para el control de Aegilops cylindrica en el cultivo de Triticum aestivum L. de invierno. En la locación Idaho, con muy baja densidad de malezas, no se identificó ningún sistema IWM que consistentemente logrará reducir al máximo la pérdida del grano y las densidades de la maleza. Sin embargo, se identificaron sistemas IWM exitosos para el manejo de Aegilops cilíndrica conforme se fueron identificando las poblaciones de las malezas. En la locación Washington, con una moderada población de Aegilops cylindrica, el mejor sistema IWM basado en la respuesta anteriormente citada fue el sistema B:SW–F–WW:S. En Washington, este sistema fue mejor que el sistema de siembra integrado porque la variedad competitiva del Triticum aestivum L. de invierno no se desarrollo bien en condiciones de sequía durante el segundo año. En Oregón, una locación con una alta densidad de malezas, el sistema B:SW–F–WW:I obtuvo consistentemente mayores rendimientos de grano, redujo la pérdida del mismo y disminuyó la densidad de Aegilops cylindrica. Si los productores en PNW adoptaran estos sistemas integrados en la región del Triticum aestivum L.–barbecho, incrementarían sus ganancias al disminuir la pérdida del grano, los insumos del campo y la resistencia del Aegilops cylindrica al herbicida.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, R. L. 1997. Cultural systems can reduce reproductive potential of winter annual grasses. Weed Technol. 11:608613.Google Scholar
Auld, B. A., Menz, K. M., and Tisdell, C. A. 1987. Weed control economics. New York: Academic. Pp. 4783.Google Scholar
Ball, D. A., Young, F. L., and Ogg, A. G. Jr. 1999. Selective control of jointed goatgrass with imazamox in herbicide-resistant wheat. Weed Technol. 13:7782.Google Scholar
Blackshaw, R. E., Harker, K. N., O'Donovan, J. T., Beckie, H. J., and Smith, E. G. 2008. Ongoing development of integrated weed management systems on the Canadian Prairies. Weed Sci. 56:168172.Google Scholar
Blackshaw, R. E., Semach, G., Li, X., O'Donovan, J. T., and Harker, N. 1999. An integrated weed management approach to managing foxtail barley (Hordeum jubatum) in conservation tillage systems. Weed Technol. 13:347353.CrossRefGoogle Scholar
Bolton, F. E. 1983. Cropping practices: Pacific Northwest. Pages 419426. In Diegne, H. E. and Willis, W. O. eds. Dryland Agriculture. Agron. Monogr. 23. Madison, WI: ASA, CSSA, and SSSA.Google Scholar
Buchanan, G. A. 1976. Management of the weed pests of cotton (Gossypium hirsutum). Pages 168184. In Fadeyev, Y. and Adkisson, P. eds. Proceedings of the U.S.–U.S.S.R. Symposium: The Integrated Control of the Arthropod, Disease and Weed Pests of Cotton, Grain Sorghum and Deciduous Fruit, Lubbock, TX. College Station, TX: Texas Agricultural Experiment Station Miscellaneous Publications 1276.Google Scholar
Buhler, D. D. 2002. 50th-anniversary-invited article: challenges and opportunities for integrated weed management. Weed Sci. 50:273280.Google Scholar
Burn, A. J., Coaker, T. H., and Jepson, P. C. 1987. Integrated pest management. San Diego, CA: Academic.Google Scholar
Donald, W. W. and Ogg, A. G. Jr. 1991. Biology and control of jointed goatgrass (Aegilops cylindrica), a review. Weed Technology. 5:317.CrossRefGoogle Scholar
Elmore, C. L. 1991. Integrated weed management symposium. Weed Technol. 5:647.Google Scholar
Gill, K. S., Arshad, M. A., and Moyer, J. R. 1997. Cultural control of weeds. Pages 237275. In Pimental, D. ed. Techniques for Reducing Pesticide Use. New York: J. Wiley.Google Scholar
Hsu, J. C. 1984. Constrained simultaneous confidence intervals for multiple comparisons with the best. Ann. Stat. 12:11361144.Google Scholar
Kappler, B. F., Lyon, D. J., Stahlman, P. W., Miller, S. D., and Eskridge, K. M. 2002. Wheat plant density influences jointed goatgrass (Aegilops cylindrica) competitiveness. Weed Technol. 16:102108.Google Scholar
Klein, R. N. and Hanson, G. E. 2009. Controlling jointed goatgrass in the central Great Plains. Proc. West. Soc. Weed Sci. 62:3334.Google Scholar
Kovach, D. A., Thill, D. C., and Young, F. L. 1988. A water-spray system for removing seed from soil. Weed Technol. 2:338341.Google Scholar
Liebman, M., Mohler, C. L., and Staver, C. P. 2001. Ecological Management of Agricultural Weeds. Cambridge, UK: Cambridge University Press. 532. p. 532 Google Scholar
Liebman, M. and Gallandt, E. R. 1997. Many little hammers: Ecological management of crop-weed interactions. Pages 291341. In Jackson, L. ed. Ecology in Agriculture. New York: Academic.CrossRefGoogle Scholar
Lyon, D. J. and Baltensperger, D. D. 1995. Cropping systems control winter annual grass weeds in winter wheat. J. Prod. Agric. 8:535539.Google Scholar
Mesbah, A. O. and Miller, S. D. 1999. Fertilizer placement affects jointed goatgrass (Aegilops cylindrica) competition in winter wheat (Triticum aestivum). Weed Technol. 13:374377.Google Scholar
Miller, G. R. 1982. Integrated weed management systems technology for crop production and crop rotation. Weed Sci. (Suppl.) 30:1.CrossRefGoogle Scholar
Miller, S. D., Kniss, A. R., Wilson, D. W., and Lyon, J. 2009. Jointed goatgrass research from Wyoming and Nebraska. Proc. West. Soc. Weed Sci. 62:34.Google Scholar
National Jointed Goatgrass Research Program 2009. http://www.jointedgoatgrass.org. Accessed September 10, 2009.Google Scholar
O'Donovan, J. T., Blackshaw, R. E., Harker, K. N., Clayton, G. W., Moyer, J. R., Dosdall, L. M., Maurice, D. C., and Turkington, T. K. 2007. Integrated approaches to managing weeds in spring-sown crops in western Canada. Crop Prot. 26:390398.Google Scholar
Ogg, A. G. Jr. and Seefeldt, S. S. 1999. Characterizing traits which enhance the competitiveness of winter wheat (Triticum aestivum) against jointed goatgrass (Aegilops cylindrica). Weed Sci. 47:7480.Google Scholar
Peeper, T. F. 2009. Jointed goatgrass management strategies in Oklahoma winter wheat. Proc. West. Soc. Weed Sci. 62:30.Google Scholar
SAS 1999. User's Guide. Version 8.0. Cary, NC: SAS Institute.Google Scholar
Sanyal, D. 2008. Introduction to the integrated weed management revisited symposium. Weed Sci. 56:140.Google Scholar
Schillinger, W. F., Donaldson, E., Allan, R. E., and Jones, S. S. 1998. Winter wheat seedling emergence from deep sowing depths. Agron. J. 90:582586.CrossRefGoogle Scholar
Schrieber, M. M. 1982. Influence of tillage, crop rotation, and weed management on giant foxtail (Setaria faberi) population dynamics on corn yield. Weed Sci. 40:645653.Google Scholar
Seefeldt, S. S., Ogg, A. G. Jr., and Hou, Y. 1999. Near-isogenic lines for Triticum aestivum height and crop competitiveness. Weed Sci. 47:316320.Google Scholar
Shaw, W. C. 1982. Integrated weed management systems technology for pest management. Weed Sci. (Suppl.) 30:212.Google Scholar
Smith, R. F. and van den Bosch, R. 1967. Integrated control. Pages 295340. In Kilgore, W. W. and Doute, R. L. eds. Pest Control: Biological, Physical, and Selected Chemical Methods. New York: Academic.Google Scholar
Swanton, C. J. and Weise, S. F. 1991. Integrated weed management: The rationale and approach. Weed Technol. 5:657663.Google Scholar
Thill, D. C., Lish, J. M., Callihan, R. H., and Bechinski, E. J. 1991. Integrated weed management—a component of integrated pest management: a critical review. Weed Technol. 5:648656.Google Scholar
Thorne, M. E., Young, F. L., Pan, W. L., Bafus, R., and Alldredge, J. R. 2003. No-till spring cereal cropping systems reduce wind erosion susceptibility in the wheat/fallow region of the Pacific Northwest. J. Soil Water Conserv. 58:250257.Google Scholar
Van Gessel, M. J. 1996. Successes of integrated weed management revisited symposium. Weed Sci. 56:140.Google Scholar
Westra, P., Gaines, T., Byrne, P., Ward, S., and Nissen, S. 2009. Jointed goatgrass research in Colorado over eleven years. Proc. West. Soc. Weed Sci. 62:2930.Google Scholar
White, A. D., Stahlman, P. W., and Northam, F. E. 2004. Impact of integrated management systems on jointed goatgrass (Aegilops cylindrica) populations. Weed Sci. 52:10101017.Google Scholar
Whitesides, R. E., Ransom, C. V., and Morishita, D. W. 2009. Developing a jointed goatgrass management program for the inter-mountain west. Proc. West. Soc. Weed Sci. 62:3536.Google Scholar
Wicks, G. A. 1984. Integrated systems for control and management of downy brome (Bromus tectorum) in cropland. Weed Sci. 32 (Suppl. 1):2631.CrossRefGoogle Scholar
Wicks, G. A., Nordquist, P. T., Baenziger, P. S., Klein, R. N., Hammous, R. H., and Watkins, J. E. 2004. Winter wheat cultivar characteristics affect annual weed suppression. Weed Technol. 18:988998.Google Scholar
William, R. D. and Warren, G. F. 1975. Competition between purple nutsedge and vegetables. Weed Sci. 23:317323.Google Scholar
Yenish, J. P. and Young, F. L. 2004. Winter wheat competition against jointed goatgrass (Aegilops cylindrica) as influenced by wheat plant height, seeding rate, and seed size. Weed Sci. 52:9961001.Google Scholar
Young, F. L., Ball, D., and Thill, D. 2002. Integrated management of jointed goatgrass (Aegilops cylindrica) in Pacific Northwest dryland cropping systems. Pages 284286. In Jacob, H. S., Dodd, J., and Moore, J. H. eds. Papers and Proceedings of the 13th Australian Weeds Conference. Perth, Western Australia: Plant Protection Society of Western Australia.Google Scholar
Young, F. L., Gallandt, E. R., and Alldredge, J. R. 2000. Predicting winter wheat (Triticum aestivum) yield loss based on jointed goatgrass (Aegilops cylindrica) populations from the previous season. Weed Technol. 14:423427.Google Scholar
Young, F. L., Ogg, A. G. Jr., and Dotray, P. A. 1990. Effect of postharvest field burning on jointed goatgrass (Aegilops cylindrica) germination. Weed Technol. 4:123127.Google Scholar
Young, F. L., Ogg, A. G. Jr., Papendick, R. I., Thill, D. C., and Alldredge, J. R. 1994. Tillage and weed management affects winter wheat yield in an integrated pest management system. Agron J. 86:147154.Google Scholar
Young, F. L., Yenish, J. P., Walenta, D. L., Ball, D. A., and Alldredge, J. R. 2003. Spring-germinating jointed goatgrass (Aegilops cylindrica) produces viable spikelets in spring-seeded wheat. Weed Sci. 51:379385.Google Scholar