Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T09:58:14.797Z Has data issue: false hasContentIssue false

Isoxaflutole Shifts Kochia (Kochia scoparia) Populations in Continuous Corn

Published online by Cambridge University Press:  20 January 2017

Gustavo M. Sbatella*
Affiliation:
University of Nebraska-Lincoln Panhandle Research and Extension Center, Department of Agronomy and Horticulture, Scottsbluff, NE 69361
Robert G. Wilson
Affiliation:
University of Nebraska-Lincoln Panhandle Research and Extension Center, Department of Agronomy and Horticulture, Scottsbluff, NE 69361
*
Corresponding author's E-mail: gsbatella2@unl.edu.

Abstract

Kochia control in continuous corn became increasingly difficult in experimental plots where isoxaflutole was used PRE for 8 yr. Studies were conducted to determine if poor kochia control resulted from an escape mechanism based on different germination rates or from a difference in sensitivity to isoxaflutole. Germination at constant temperatures showed that the kochia population in the experimental plot had greater seed dormancy compared with populations growing in adjacent fields. Germination at 25 C for seeds collected from the isoxaflutole-treated area was near 20% after 20 d, whereas germination for the other populations was above 80%. The optimal temperatures to release seed dormancy for seeds from the experimental plot were alternating 35/25 C day/night temperatures. The kochia biotype that predominated where isoxaflutole was applied PRE had elevated levels of seed dormancy and required higher alternating temperatures to release dormancy than untreated control kochia. These characteristics were unique and not found in populations never exposed to isoxaflutole. Chlorophyll content was measured to determine if differences in sensitivity to isoxaflutole existed among biotypes. Absorption at 660 nm by photosynthetic pigments was similar among the biotypes at increasing herbicide rates, indicating no differences in sensitivity to isoxaflutole among populations. Reduced kochia control in the experimental plot was due to delayed seed germination, which allowed isoxaflutole to degrade before seeds germinated. The rapid herbicide dissipation from soil can be attributed in part to coarse soils, soil moisture, and the low isoxaflutole rate.

El control de Kochia scoparia (L.) Schrad en maíz de siembra continua fue cada vez más difícil en parcelas experimentales donde isoxaflutole fue usado en pre emergencia por 8 años. Se llevaron al cabo estudios para determinar si el control deficiente de Kochia scoparia (L.) Schrad. fue el resultado de un mecanismo de escape basado en diferentes periodos de germinación, ó a diferencias en la sensibilidad al isoxaflutole. La germinación a temperaturas constantes demostró que las semillas de la población de Kochia scoparia (L.) Schrad provenientes de las parcelas experimentales presentaron un mayor grado de dormicion comparada con la población que se encontraban en campos adyacentes. La germinación a 25 C para semillas recolectadas del área tratada con isoxaflutole fue cerca del 20% después de 20 días, mientras que la germinación de las otras poblaciones fue superior al 80%. Las temperaturas óptimas para liberar la inactividad de las semillas de la parcela experimental fueron alternando temperaturas de 35/25 C diurnas/nocturnas. El biotipo de Kochia scoparia (L.) Schrad que predominó donde se aplicó isoxaflutole en pre emergencia mostró elevados niveles de dormicion de semilla y alternar temperaturas más altas para liberar la dormicion, en comparación con el testigo no tratado de Kochia scoparia (L.) Schrad. Estas características fueron únicas y no se observaron en poblaciones nunca expuestas al isoxaflutole. El contenido de clorofila fue medido para determinar si existian diferencias en la sensibilidad al isoxaflutole existían entre los biotipos. La absorción a 660 nm por pigmentos fotosintéticos fue similar entre biotipos al incremental la dosis, lo que sugiere que no existe diferencias en la sensibilidad al isoxaflutole entre poblaciones. La reduccion en el control de Kochia scoparia (L.) Schrad en la parcela experimental se debió a la germinación tardía, la que permitió la degradacion del isoxaflutole antes que las semillas germinaran. La rápida disipación del herbicida en el suelo puede atribuirse en parte a la textura y contenido de humedad del suelo y a la baja dosis de isoxaflutole.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andersson, L. and Milberg, P. 1998. Variation in seed dormancy among mother plants, populations and years of selection. Seed Sci. Res 8:2938.CrossRefGoogle Scholar
[AOSA] Association of Official Seed Analysts 2000. Tetrazolium Testing Handbook 29. http://www.aosaseed.com/TZwebsite/TZupdateindex.html. Accessed: April 24, 2008.Google Scholar
Baskin, C. C. and Baskin, J. M. 1998. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. 1st ed. San Diego, CA: Academic Press. 149155.Google Scholar
Bell, A. R., Nalewaja, J. D., and Schooler, A. B. 1972. Response of kochia selections to 2, 4-D, dicamba, and picloram. Weed Sci 20:458462.CrossRefGoogle Scholar
Beltran, E., Fenet, H., Cooper, J-F., and Coste, C-M. 2003. Fate of isoxaflutole in soil under controlled conditions. J. Agric. Food Chem 51:146151.CrossRefGoogle ScholarPubMed
Bewley, J. D. and Black, M. 1985. Seeds—Physiology of Development and Germination. New York: Plenum Press. 175177.CrossRefGoogle Scholar
Cousens, R. and Mortimer, M. 1995. Dynamics of Weed Populations. Cambridge, UK: Cambridge University Press. 1220.CrossRefGoogle Scholar
Dyer, W. E., Chee, P. W., and Fay, P. K. 1993. Rapid germination of sulfonylurea-resistant Kochia scoparia L. accessions is associated with elevated seed levels of branched chain amino acids. Weed Sci 41:1822.CrossRefGoogle Scholar
Fenner, M. 1991. The effects of parent environment on seed germinability. Seed Sci. Res 1:7584.CrossRefGoogle Scholar
Foes, M. J., Liu, L., Vigue, G., Stoller, E. W., Wax, L. M., and Tranel, P. J. 1999. A kochia (Kochia scoparia) biotype resistant to triazine and ALS-inhibiting herbicides. Weed Sci 47:2027.CrossRefGoogle Scholar
Foley, M. E. 2001. Seed dormancy: an update on terminology, physiological genetics, and quantitative trait loci regulating germinability. Weed Sci 49:305317.CrossRefGoogle Scholar
Guttieri, M. J. 1998. Inbreeding coefficients of field populations of Kochia scoparia using chlorsulfuron resistance as a phenotypic marker. Weed Sci 46:521525.CrossRefGoogle Scholar
Harper, J. L. 1977. Population Biology of Plants. New York: Academic Press. 6972.Google Scholar
Leon, R. G. and Owen, M. D. K. 2006. Tillage systems and seed dormancy effects on common waterhemp (Amaranthus tuberculatus) seedling emergence. Weed Sci 54:10371044.CrossRefGoogle Scholar
Mengistu, L. W. and Messersmith, C. G. 2002. Genetic diversity of kochia. Weed Sci 50:498503.CrossRefGoogle Scholar
Mortimer, A. M. 1997. Phenological adaptation in weeds—an evolutionary response to the use of herbicides? Pestic. Sci 51:299304.3.0.CO;2-I>CrossRefGoogle Scholar
Pallett, K. E., Little, J. P., Veeraskaran, P., and Viviani, F. 1997. Extended summary: new perspectives in mechanism of herbicide action. Pestic. Sci 50:8384.3.0.CO;2-S>CrossRefGoogle Scholar
Papista, E., Acs, E., and Boddi, B. 2002. Chlorophyll-a determination with ethanol—a critical test. Hydrobiologia 485:191198.CrossRefGoogle Scholar
Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanism of sulfonylurea resistance in the broadleaf weed, Kochia scoparia . Plant Physiol 93:5561.CrossRefGoogle ScholarPubMed
Sbatella, G. M. and Wilson, R. G. 2008. In search for answers to limited control of kochia in corn with isoxaflutole. Proc. West. Soc. Weed Sci 61:5859.Google Scholar
Shipman, L. L., Cotton, T. M., Norris, J. R., and Katz, J. J. 1976. An analysis of the visible absorption spectrum of chlorophyll a monomer, dimer, and oligomers in solution. J. Am. Chem. Soc 98:82228230.CrossRefGoogle ScholarPubMed
Silvertown, J. W. 1984. Phenotypic variety in seed germination behavior: the ontogeny and evolution of somatic polymorphism in seeds. Am. Nat 124:116.CrossRefGoogle Scholar
Sorensen, A. E. 1978. Somatic polymorphism and seed dispersal. Nature 276:174176.CrossRefGoogle Scholar
Venable, D. L. 1985. The evolutionary ecology of seed heteromorphism. Am. Nat 126:577595.CrossRefGoogle Scholar
Vila-Aiub, M. M., Neve, P., Steadman, K. J., and Powles, S. B. 2005. Ecological fitness of a multiple herbicide-resistant Lolium rigidum population: dynamics of seed germination and seedling emergence of resistant and susceptible phenotypes. J. Appl. Ecol 42:288298.CrossRefGoogle Scholar