Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T02:39:13.212Z Has data issue: false hasContentIssue false

Japanese Bindweed (Calystegia hederacea) Abundance and Response to Winter Wheat Seeding Rate and Nitrogen Fertilization in the North China Plain

Published online by Cambridge University Press:  20 January 2017

Alexander Menegat*
Affiliation:
Department of Weed Science, University of Hohenheim, 70593 Stuttgart, Germany
Ortrud Jäck
Affiliation:
Department of Weed Science, University of Hohenheim, 70593 Stuttgart, Germany
Jinwei Zhang
Affiliation:
College Agriculture and Biotechnology, China Agricultural University, Beijing, China
Kathrin Kleinknecht
Affiliation:
Institute for Crop Science, Department of Bioinformatics, University of Hohenheim, 70593 Stuttgart, Germany
Bettina U. Müller
Affiliation:
Institute for Crop Science, Department of Bioinformatics, University of Hohenheim, 70593 Stuttgart, Germany
Hans-Peter Piepho
Affiliation:
Institute for Crop Science, Department of Bioinformatics, University of Hohenheim, 70593 Stuttgart, Germany
Hanwen Ni
Affiliation:
College Agriculture and Biotechnology, China Agricultural University, Beijing, China
Roland Gerhards
Affiliation:
Department of Weed Science, University of Hohenheim, 70593 Stuttgart, Germany
*
Corresponding author's E-mail: alexander.menegat@uni-hohenheim.de

Abstract

Japanese bindweed was found to be one of the most abundant and most difficult-to-control weed species during a 2-yr weed survey in more than 100 winter wheat fields in the North China Plain region. Multivariate data analysis showed that Japanese bindweed is most abundant at sites with comparative low nitrogen (N) fertilization intensities and low crop densities. To gain deeper insights into the biology of Japanese bindweed under various N fertilization intensities, winter wheat seeding rates, herbicide treatments, and their interactions, a 2-yr field experiment was performed. In nonfertilized plots, a herbicide efficacy (based on density reduction) of 22% for 2,4-D, and of 25% for tribenuron-methyl was found. The maximum herbicide efficacy in Nmin-fertilized plots (target N value based on expected crop yield minus soil mineral nitrogen content, ) was 32% for 2,4-D and 34% for tribenuron-methyl. In plots fertilized according to the farmer's practices, a maximum herbicide efficacy of 72% for 2,4-D and of 64% for tribenuron-methyl could be observed. Furthermore, medium and high seeding rates improved the herbicide efficacy by at least 39% for tribenuron-methyl and 44% for 2,4-D compared to the low seeding rate. Winter wheat yield was not significantly affected by seeding rate itself, whereas at low and medium seeding rates, Nmin fertilization was decreasing winter wheat yield significantly compared to the farmer's usual fertilization practice. At the highest seeding rate, Nmin fertilization resulted in equal yields compared to the farmer's practices of fertilization.

Se encontró que Calystegia hederacea fue una de las especies de malezas más abundantes y más difíciles de controlar en un estudio observacional de 2 años de duración en más de 100 campos de trigo de invierno en la región de las Planicies del Norte de China. Análisis multivariado de datos mostró que C. hederacea es más abundante en sitios con niveles comparativos bajos de intensidad de fertilización con nitrógeno (N) y densidades de cultivo bajas. Para ganar un mayor conocimiento sobre la biología de C. hederacea bajo intensidades variables de N, densidades de siembra de trigo de invierno, tratamientos con herbicidas, y sus interacciones, se realizó un experimento de campo durante 2 años. En parcelas sin fertilización, se encontró una eficacia del herbicida (basada en reducción de la densidad de la maleza) de 22% con 2,4-D, y de 25% con tribenuron-methyl. La eficacia máxima de herbicidas, en parcelas fertilizadas usando el método Nmin, fue 32% con 2,4-D y 34% con tribenuron-methyl. En las parcelas fertilizadas de acuerdo a las prácticas de los productores, la eficacia máxima del herbicida observada fue 72% para 2,4-D y 64% para tribenuron-methyl. Además, densidades de siembra medias y altas mejoraron la eficacia del herbicida en al menos 39% con tribenuron-methyl y 44% con 2,4-D al comparase con la densidad de siembra baja. El rendimiento del trigo de invierno no fue afectado significativamente por la densidad de siembra, mientras que en las densidades de siembra baja y media, la fertilización Nmin disminuyó el rendimiento del trigo de invierno significativamente, al compararse con las prácticas de fertilización usuales de los productores. En la densidad de siembra alta, la fertilización Nmin resultó en rendimientos iguales en comparación con las prácticas de fertilización de los productores.

Type
Weed Biology & Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andreasen, C., Litz, A.-S., and Streibig, J. C. 2006. Growth response of six weed species and spring barley (Hordeum vulgare) to increasing levels of nitrogen and phosphorus. Weed Res. 46:503512.CrossRefGoogle Scholar
Cathcard, R. J., Chandler, K., and Swanton, C. J. 2004. Fertilizer nitrogen rate and the response of weeds to herbicides. Weed Sci. 52:291296.Google Scholar
Chen, X., Zhang, F., Römheld, V., Horlacher, D., Schulz, R., Böning-Zilkens, M., Wang, P., and Claupein, W. 2006. Synchronizing N supply from soil and fertilizer and N demand of winter wheat by an improved Nmin method. Nutr. Cycl. Agroecosyst. 74:9198.CrossRefGoogle Scholar
Chen, X., Zhou, J., Wang, X., Blackmer, A. M., and Zhang, F. 2004. Optimal rates of nitrogen fertilization for a winter wheat–corn cropping system in Northern China. Commun. Soil Sci. Plant Anal. 35:583597.Google Scholar
Cui, Z. 2005. Optimization of the N fertilizer management for a winter wheat–summer corn rotation system in the Northern China Plain—from field to regional scale. Ph.D. dissertation. Beijing, China: China Agricultural University.Google Scholar
Dixon, P. 2003. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14:927930.Google Scholar
Fang, Y., Xu, B.-C., Turner, N. C., and Li, F.-M. 2010. Grain yield, dry matter accumulation and remobilization, and root respiration in winter wheat as affected by seeding rate and root pruning. Eur. J. Agron. 33:257266.Google Scholar
Gao, Y., Li, Y., Zhang, J., Liu, W., Dang, Z., Cao, W., and Quiang, Q. 2009. Effects of mulch, N fertilizer, and plant density on wheat yield, wheat nitrogen uptake, and residual soil nitrate in a dryland area of China. Nutr. Cycl. Agroecosyst. 85:109121.Google Scholar
Haas, H. and Streibig, J. C. 1982. Changing patterns of weed distribution as a result of herbicide use and other agronomic factors. Pages 5779 in LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. New York J. Wiley.Google Scholar
He, C., Liu, X., Fangmeier, A., and Zhang, F. 2007. Quantifying the total airborne nitrogen input into agroecosystems in the North China Plain. Agric. Ecosyt. Environ. 121:395400.Google Scholar
Iqbal, J. and Wright, D. 1997. Effects of nitrogen supply on competition between wheat and three annual weed species. Weed Res. 37:391400.Google Scholar
Kenward, M. G. and Roger, J. H. 1997. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 53:983997.CrossRefGoogle ScholarPubMed
Kim, D. S., Marshall, E. J. P., Caseley, J. C., and Brain, P. 2006. Modelling interactions between herbicide and nitrogen fertilizer in terms of weed response. Weed Res. 46:480491.Google Scholar
Lemerle, D., Cousens, R. D., Gill, G. S., Peltzer, S. J., Moerkerk, M., Murphy, C. E., Collins, D., and Cullis, B. R. 2004. Reliability of higher seeding rates of wheat for increased competitiveness with weeds in low rainfall environments. J. Agric. Sci. 142:395409.Google Scholar
Löw, D. 2003. Crop Farming in China: Technology, Markets, Institutions and the Use of Pesticides. Aachen, Germany Shaker Verlag. Pp. 5781.Google Scholar
Meng, Q., Sun, Q., Chen, X., Cui, Z., Yue, S., Zhang, F., and Römheld, V. 2012. Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agric. Ecosyst. Environ. 146:93102.Google Scholar
Mokhtassi-Bidgoli, A., AghaAlikhani, M., Nassiri-Mahallati, M., Zand, E., Gonzalez-Andujar, J. L., and Azari, A. 2013. Agronomic performance, seed quality and nitrogen uptake of Descurainia sophia in response to different nitrogen rates and water regimes. Ind. Crop. Prod. 44:583592.Google Scholar
National Bureau of Statistics of China. 2009. China Agriculture Yearbook. Beijing China Agriculture Press. [In Chinese]Google Scholar
Oksanen, J., Blanchet, G., Kindt, R., Legendre, P., O'Hara, R. B., Simpson, G. L., Solymos, P., Henry, M., Stevens, H., and Wagner, H. 2010. Vegan: Community Ecology Package. R package version 1.17-4. http://CRAN.R-project.org/package=vegan. Accessed February 1, 2012.Google Scholar
Paul, N. D. and Ayres, P. G. 1990. Effects of interactions between nutrient supply and rust infection of Senecio vulgaris L. on competition with Capsella bursa-pastoris (L.) Medic. New Phytol. 1114:667674.Google Scholar
Pellett, P. L. and Saghir, A. R. 1971. Amino acid composition of grain protein from wheat and barley treated with 2,4–D. Weed Res. 11:182189.Google Scholar
Piepho, H.-P. 2009. Data transformation in statistical analysis of field trials with changing treatment variance. Agron. J. 101:865869.Google Scholar
R Development Core Team. 2010. R: A Language and Environment for Statistical Computing. http://www.R-project.org. Accessed February 1, 2012.Google Scholar
Rhui-cheng, F. and Brummitt, R. K. 1995. 10. Calystegia R. Brown, Prodr. 483. 1810, nom. cons. Flora of China. 16:286289.Google Scholar
SAS. 2011. SAS User's Guide, Version 9.3. Cary, NC SAS Institute. 8621 p.Google Scholar
Shaw, D. R., Peeper, T. F., and Basler, E. 1985. Effect of nitrogen and phosphorus status on the translocation of three herbicides in field bindweed (Convolvulus arvensis L.). Plant Growth Reg. 3:7986.Google Scholar
Stone, A. E., Peeper, T. F., and Kelley, J. P. 2005. Efficacy and acceptance of herbicides applied for field bindweed (Convolvulus arvensis) control. Weed Technol. 19:148153.Google Scholar
ter Braak, C.J.F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology. 67:11671179.Google Scholar
Thomas, A. G. 1985. Weed survey system used in Saskatchewan for cereal and oilseed crops. Weed Sci. 33:3443.Google Scholar
Wehrmann, J., Scharpf, H. C., Boehmer, M., and Wollring, J. 1982. Determination of nitrogen fertilizer requirements by nitrate analysis of the soil and the plant. Pages 702709 in Plant Nutrition Colloquium, Coventry, United Kingdom.Google Scholar
Weiner, J., Griepentrog, H.-W., and Kristensen, L. 2001. Suppression of weeds by spring wheat Triticum aestivum increases with crop density and spatial uniformity. J. Appl. Ecol. 38:784790.Google Scholar
Zhang, Z. 2003. Development of chemical weed control and integrated weed management in China. Weed Biol. Manag. 3:197203.Google Scholar
Zhao, J. 1997. The investigation and analysis of N application and yield in Beijing suburb. Beijing Agric. Sci. 15:3638. [In Chinese]Google Scholar
Zhao, R., Chen, X., Zhang, F., Zhang, H., Schroder, J., and Römheld, V. 2006. Fertilization and nitrogen balance in a wheat–corn rotation system in north China. Agron. J. 98:938945.Google Scholar