Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T11:21:44.054Z Has data issue: false hasContentIssue false

Late-Season Weed Control in Glyphosate-Resistant Sugarbeet

Published online by Cambridge University Press:  20 January 2017

Robert G. Wilson*
Affiliation:
University of Nebraska-Lincoln Panhandle Research and Extension Center, Department of Agronomy and Horticulture, Scottsbluff, NE 69361
Gustavo M. Sbatella
Affiliation:
University of Nebraska-Lincoln Panhandle Research and Extension Center, Department of Agronomy and Horticulture, Scottsbluff, NE 69361
*
Corresponding author's E-mail: rwilson1@unl.edu

Abstract

Field trials were conducted from 2006 through 2008 to determine the influence of ethofumesate applied at planting followed by dimethenamid-p or s-metolachlor applied to emerged sugarbeet for late-season weed control in glyphosate-resistant sugarbeet. The entire plot area was kept weed-free until mid-June by applying glyphosate at the four- and eight-true-leaf sugarbeet growth stages. Glyphosate was not applied from mid-June until late-July to allow weed growth as a measure of the residual benefit from ethofumesate, dimethenamid-p, and s-metolachlor applied earlier in the growing season. Dimethenamid-p was not as effective as s-metolachlor in reducing weed density in mid-July. Late-season weed suppression from both s-metolachlor and dimethenamid-p benefitted from ethofumesate applied at planting. Dimethenamid-p applied when sugarbeet reached the six-true-leaf growth stage reduced weed density and sugarbeet injury more than earlier applications. The lowest weed density in mid-July was achieved when s-metolachlor was applied at the six- to eight-true-leaf sugarbeet growth stage compared to earlier growth stages. A planting time application of ethofumesate followed by two glyphosate applications plus s-metolachlor at the eight-true-leaf sugarbeet growth stage provided 89% more weed control in mid-July than glyphosate alone. Suppressing late-season weed development increased sugarbeet root yield 15% compared with areas not receiving ethofumesate and s-metolachlor.

Se llevaron a cabo estudios de campo de 2006 a 2008 para determinar la influencia de ethofumesate aplicado a la siembra, seguido por dimethenamid-p o s-metolachlor aplicados a remolacha emergida para el control de malezas en períodos tardíos del ciclo productivo en remolacha azucarera resistente al glifosato. La superficie completa de la parcela se mantuvo libre de malezas hasta mediados de junio mediante la aplicación de glifosato en las etapas de desarrollo del cultivo de cuatro a ocho hojas verdaderas. El glifosato no se aplicó desde mediados de junio hasta finales de julio para permitir que las malezas creciron para poder así medir el beneficio residual de ethofumesate, dimethenamid-p y s-metolachlor aplicados más temprano en el ciclo del cultivo. Dimethenamid-p no fue tan efectivo como s-metolachlor para reducir la densidad de la maleza a mediados de julio. La supresión tardía de maleza por s-metolachlor y dimethenamid-p se benefició de la aplicación de ethofumesate a la siembra. Dimethenamid-p aplicado cuando la remolacha alcanzó la etapa de crecimiento de seis hojas verdaderas, redujo la densidad de la maleza y el daño al cultivo más que las aplicaciones más tempranas. La menor densidad de malezas a mediados de julio se obtuvo cuando se aplicó s-metolachlor en la etapa de crecimiento de seis a ocho hojas verdaderas, comparada con las etapas de crecimiento anteriores. Una aplicación de ethofumesate al momento de la siembra seguida de dos aplicaciones de glifosato más s-metolachlor en la etapa de ocho hojas verdaderas, proporcionó 89% más control a mediados de julio, que el glifosato solo. La supresión del desarrollo de las malezas durante períodos tardíos del ciclo del cultivo incrementó el rendimiento de la raíz de la remolacha 15% en comparación con las áreas que no recibieron ethofumesate y s-metolachlor.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Association of Official Agriculture Chemists. 1955. Official Methods of Analysis. 8th ed. Washington, DC Association of Official Agriculture Chemists. Pp. 564568.Google Scholar
Bernards, M. L., Gaussoin, R. E., Klein, R. N., Knezevic, S. Z., Lyon, D. J., Sandell, L. D., Wilson, R. G., Shea, P. J., and Ogg, C. L. 2009. Guide for Weed Management in Nebraska. Extension Circular EC 130. Lincoln, NE IANR, University of Nebraska. 200 p.Google Scholar
Bollman, S. L. and Sprague, C. L. 2007. Optimizing s-metolachlor and dimethenamid-p in sugarbeet microrate treatments. Weed Technol. 21:10541063.CrossRefGoogle Scholar
Dale, T. M., Renner, K. A., and Kravchenko, A. N. 2006. Effect of herbicides on weed control and sugarbeet (Beta vulgaris) yield and quality. Weed Technol. 20:150156.CrossRefGoogle Scholar
Dawson, J. H. 1965. Competition between irrigated sugarbeets and annual weeds. Weeds 13:245249.CrossRefGoogle Scholar
Dexter, A. G. and Luecke, J. L. 1998. Special survey on microrate, 1998. Sugarbeet Res. Ext. Rep. 29:6475.Google Scholar
Gomez, K. A. and Gomez, A. A. 1984. Statistical Procedures for Agriculture Research. New York J. Wiley. 680 p.Google Scholar
Kemp, N. J., Taylor, E. C., and Renner, K. A. 2009. Weed management in glyphosate- and glufosinate-resistant sugarbeet. Weed Technol. 23:416424.CrossRefGoogle Scholar
Kniss, A. R., Wilson, R. G., Martin, A. R., Burgener, P. A., and Feuz, D. M. 2004. Economic evaluation of glyphosate-resistant and conventional sugarbeet. Weed Technol. 18:388396.CrossRefGoogle Scholar
Malik, V. S., Swanton, C. J., and Michaels, T. E. 1993. Interaction of white bean cultivars, row spacing, and seed density with annual weeds. Weed Sci. 41:6268.CrossRefGoogle Scholar
Senseman, S. A., ed. 2007. Herbicide Handbook. 9th ed. Lawrence, KS Weed Science Society of America. 458 p.Google Scholar
Stebbing, J. A., Wilson, R. G., Martin, A. R., and Smith, J. A. 2000. Row spacing, redroot pigweed (Amaranthus retroflexus) density, and sugarbeet (Beta vulgaris) cultivar effects on sugarbeet development. J. Sugar Beet Res. 37:1132.CrossRefGoogle Scholar
Weatherspoon, D. M. and Schweizer, E. E. 1969. Competition between kochia and sugarbeets. Weed Sci. 17:464467.CrossRefGoogle Scholar
Wicks, G. H. and Wilson, R. G. 1983. Control of weeds in sugarbeets (Beta vulgaris) with hand hoeing and herbicides. Weed Sci. 31:493499.CrossRefGoogle Scholar
Wilson, R. G., Miller, S. D., Westra, P., Kniss, A. R., Stahlman, P. W., Wicks, G. H., and Kochman, S. D. 2007. Glyphosate-induced weed shifts in glyphosate-resistant corn or a rotation of glyphosate-resistant corn, sugarbeet, and spring wheat. Weed Technol. 21:900909.CrossRefGoogle Scholar
Wilson, R. G., Sbatella, G. M., Weller, S. C., Young, B. G., Jordan, D. L., Owen, O. M. K., Dixon, P., and Shaw, D. R. 2009. Benchmark study: seedbank emergence patterns in best management practices fields versus grower practices. Proc. North Cent. Weed Sci. Soc. 64:117.Google Scholar
Yonts, C. D. and Smith, J. A. 1997. Effects of plant population and row width on yield of sugarbeet. J. Sugar Beet Res. 34:2130.CrossRefGoogle Scholar