Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T20:40:31.509Z Has data issue: false hasContentIssue false

Late-Season Weed Escape Survey Reveals Discontinued Atrazine Use Associated with Greater Abundance of Broadleaf Weeds

Published online by Cambridge University Press:  20 January 2017

Ross A. Recker
Affiliation:
Department of Agronomy, University of Wisconsin–Madison, 1575 Linden Dr., Madison, WI 53706
Paul D. Mitchell
Affiliation:
Department of Agricultural and Applied Economics, University of Wisconsin–Madison, 427 Lorch St., Madison, WI 53706
David E. Stoltenberg
Affiliation:
Department of Agronomy, University of Wisconsin–Madison, 1575 Linden Dr., Madison, WI 53706
Joseph G. Lauer
Affiliation:
Department of Agronomy, University of Wisconsin–Madison, 1575 Linden Dr., Madison, WI 53706
Vince M. Davis*
Affiliation:
Department of Agronomy, University of Wisconsin–Madison, 1575 Linden Dr., Madison, WI 53706
*
Corresponding author's E-mail: vince.davis@basf.com.

Abstract

Atrazine has been used for control of many weeds, primarily broadleaf weeds, in U.S. corn fields since 1957. Recently, the adoption of glyphosate-resistant corn hybrids have led to glyphosate eclipsing atrazine as the most commonly used herbicide in corn production. However, the evolution and spread of glyphosate-resistant weeds is a major concern. Atrazine use in Wisconsin is prohibited in 102 areas encompassing 0.49 million ha where total chlorinated residues were found in drinking water wells at concentrations > 3 μg L−1. Atrazine has been prohibited in many of those areas for > 10 yr, providing an opportunity to evaluate weed community composition differences due to herbicide regulation. In question, has the abundance of broadleaf weeds increased, coupled with an increased reliance on glyphosate, where atrazine use has been discontinued? To answer this, an online questionnaire was distributed to Wisconsin growers in June and then weeds present in 343 fields in late July through mid-September in 2012 and 2013 were counted. Data were summarized for frequency, uniformity, density, and relative abundance to compare weed community composition in fields with discontinued vs. recent atrazine use. Growers used glyphosate in 70 vs. 54% of fields with discontinued vs. recent atrazine use, respectively (P = 0.021). Moreover, broadleaf weeds were found more frequently, (73 vs. 61%; P = 0.03), they had 50% greater in-field uniformity (P = 0.002), and density was 0.4 vs. 0.19 plants m−2 (i.e., twofold greater; P < 0.0001) in discontinued vs. recent atrazine-use fields. Changes were most evident with troublesome glyphosate-resistant broadleaf weeds such as Amaranthus species and giant ragweed. In conclusion, weed community composition consisted of more broadleaf weeds in fields where atrazine has not been used in the recent decade coupled with greater glyphosate use. These results provide evidence of negative long-term implications for glyphosate resistance where growers increased reliance on glyphosate in place of atrazine.

Atrazine ha sido usado para el control de muchas malezas, principalmente malezas de hoja ancha, en campos de maíz en los Estados Unidos desde 1957. Recientemente, la adopción de híbridos de maíz resistentes a glyphosate ha hecho que glyphosate eclipse el uso de atrazine como el herbicida más usado en la producción de maíz. Sin embargo, la evolución y diseminación de malezas resistentes a glyphosate causa gran preocupación. El uso de atrazine en Wisconsin está prohibido en 102 áreas cubriendo 0.49 millones de hectáreas, donde residuos clorinados totales fueron encontrados en pozos de agua potable a concentraciones > 3 μ L−1. Atrazine ha estado prohibido en muchas de esas áreas por > 10 años, lo que brinda una oportunidad para evaluar las diferencias en la composición de la comunidad de malezas debido a la regulación del uso de herbicidas. ¿Ha incrementado la abundancia de malezas de hoja ancha en combinación con la mayor dependencia en glyphosate, cuando se descontinuó el uso de atrazine? Para responder esta pregunta se distribuyó un cuestionario en línea a productores de Wisconsin en Junio y después se contaron las malezas presentes en 343 campos desde el final de Julio hasta la mitad de Septiembre en 2012 y 2013. Los datos fueron resumidos en frecuencia, uniformidad, densidad, y abundancia relativa para comparar la composición de la comunidad de malezas en campos con uso de atrazine descontinuado vs. reciente. Los productores usaron glyphosate en 70 vs. 54% de los campos con uso de atrazine descontinuado vs. reciente, respectivamente (P = 0.021). Además, las malezas de hoja ancha fueron encontradas más frecuentemente (73 vs. 61%; P = 0.03), tuvieron 50% mayor uniformidad dentro de los campos (P = 0.002), y la densidad fue 0.4 vs. 0.19 plantas m−2 (i.e., más del doble; P < 0.0001) en campos con uso de atrazine discontinuado vs. reciente. Los cambios fueron más evidentes con malezas de hoja ancha resistentes a glyphosate problemáticas, tales como especies de Amaranthus y Ambrosia trifida. En conclusión, la composición de las comunidades de malezas consistió de más malezas de hoja ancha en campos donde atrazine no ha sido usado durante la pasada década y el uso de glyphosate es mayor. Estos resultados proveen evidencia de las implicaciones negativas con relación a la resistencia a glyphosate en el largo plazo donde se ha incrementado la dependencia al glyphosate en lugar de atrazine.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barnes, J, Johnson, B, Gibson, K, Weller, S (2004) Crop rotation and tillage system influence late-season incidence of giant ragweed and horseweed in Indiana soybean. Online Crop Manag DOI: Google Scholar
Boerboom, C, Cullen, E, Esker, P, Flashinski, R, Grau, C, Jensen, B, Renz, M. (2008) Pest Management in Wisconsin Field Crops. A3646. University of Wisconsin-Extension, Cooperative Extension Madison, WI. Pp 223225 Google Scholar
Boerboom, C, Cullen, E, Esker, P, Flashinski, R, Jensen, B, Renz, M (2009) Pest Management in Wisconsin Field Crops. A3646. University of Wisconsin-Extension, Cooperative Extension Madison, WI. Pp 235237 Google Scholar
Boerboom, C, Cullen, E, Esker, P, Flashinski, R, Jensen, B, Renz, M. (2010) Pest Management in Wisconsin Field Crops. A3646. University of Wisconsin-Extension, Cooperative Extension Madison, WI. Pp 239241 Google Scholar
Box, GEP, Cox, DR (1964) An analysis of transformations. J R Stat Soc Series B 26: 211252 Google Scholar
Bridges, DC (2008) Benefits of triazine herbicides in corn and sorghum production. Pages 163174 in LeBaron, HM, McFarland, JE, Burnside, O, eds. The Triazine Herbicides: 50 Years Revolutionizing Agriculture. San Diego: Elsevier Google Scholar
Buhler, DD, Stoltenberg, DE, Becker, RL, Gunsolus, JL (1994) Perennial weed populations after 14 years of variable tillage and cropping practices. Weed Sci 42:205209 Google Scholar
Burgos, NR, Tranel, PJ, Streibig, JC, Davis, VM, Shaner, D, Norsworthy, JK, Ritz, C. (2013). Confirmation of resistance to herbicides and evaluation of resistance levels. Weed Sci 61:420 CrossRefGoogle Scholar
Creech, JE, Johnson, WG (2006) Survey of broadleaf winter weeds in Indiana production fields infested with soybean cyst nematode (Heterodera glycines). Weed Technol 20:10661075 Google Scholar
Crookston, RK, Kurle, JE, Copeland, PJ, Ford, JH, Lueschen, WE (1991) Rotational cropping sequence affects yield of corn and soybean. Agron J 83:108113 CrossRefGoogle Scholar
Culpepper, AS (2006) Glyphosate-induced weed shifts. Weed Technol 20:277281 Google Scholar
Culpepper, AS, Webster, TM, Sosnoskie, LM, York, AC (2010) Glyphosate-resistant Palmer amaranth in the United States. Pages 195212 in Glyphosate Resistance in Crops and Weeds: History, Development, and Management. New York: J Wiley Google Scholar
Davis, VM, Gibson, KD, Bauman, TT, Weller, SC, Johnson, WG (2009a) Influence of weed management practices and crop rotation on glyphosate-resistant horseweed (Conyza canadensis) population dynamics and crop yield-years III and IV. Weed Sci 57:417426 Google Scholar
Davis, VM, Gibson, KD, Johnson, WG (2008) A field survey to determine distribution and frequency of glyphosate-resistant horseweed (Conyza canadensis) in Indiana. Weed Technol 22:331338 CrossRefGoogle Scholar
Davis, VM, Gibson, KD, Mock, VA, Johnson, WG (2009b) In-field and soil-related factors that affect the presence and prediction of glyphosate-resistant horseweed (Conyza canadensis) populations collected from Indiana soybean fields. Weed Sci 57:281289 CrossRefGoogle Scholar
Davis, VM, Recker, RA (2012) Late-Season Weed Escapes in Wisconsin Corn and Soybean Fields. http://ipcm.wisc.edu/blog/2012/06/late-season-weed-escapes-in-wisconsin-corn-and-soybean-fields/. Accessed April 11, 2014Google Scholar
Davis, VM, Recker, RA (2013) Corn and soybean herbicide use survey participation. Wisconsin Crop Manager. http://ipcm.wisc.edu/blog/2013/06/corn-and-soybean-herbicide-use-survey-participation/. Accessed April 11, 2014 Google Scholar
Derksen, DA, Lafond, GP, Thomas, AG, Loeppky, HA, Swanton, CJ (1993) Impact of agronomic practices on weed communities: tillage systems. Weed Sci 41:409417 Google Scholar
Fawcett, RS (2012) U.S. university herbicide efficacy studies analysis: corn and sorghum yield with atrazine versus atrazine alternatives: 2006–2010. Proc N Cent Weed Sci Soc 67:108145 Google Scholar
Fickett, ND, Boerboom, CM, Stoltenberg, DE (2013a) Predicted corn yield loss due to weed competition prior to postemergence herbicide application on Wisconsin farms. Weed Technol 27:5462 Google Scholar
Fickett, ND, Boerboom, CM, Stoltenberg, DE (2013b) Soybean yield loss potential associated with early-season weed competition across 64 site-years. Weed Sci 61:500507 CrossRefGoogle Scholar
Frick, B, Thomas, AG (1992) Weed surveys in different tillage systems in southwestern Ontario field crops. Can J Plant Sci 72:13371347 Google Scholar
Fuerst, EP, Norman, MA (1991) Interactions of herbicides with photosynthetic electron transport. Weed Sci 39:458464 Google Scholar
Heap, IM (2014). The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/summary/home.aspx. Accessed April 8, 2014Google Scholar
Johnson, WG, Davis, VM, Kruger, GR, Weller, SC (2009) Influence of glyphosate-resistant cropping systems on weed species shifts and glyphosate-resistant weed populations. Eur J Agron 31:162172 CrossRefGoogle Scholar
Legere, A, Beckie, HJ, Stevenson, FC, Thomas, AG (2000) Survey of management practices affecting the occurrence of wild oat (Avena fatua) resistance to acetyl-coa carboxylase inhibitors. Weed Technol 14:366376 Google Scholar
Legleiter, TR, Bradley, KW, Massey, RE (2009) Glyphosate-resistant waterhemp (Amaranthus rudis) control and economic returns with herbicide programs in soybean. Weed Technol 23:5461 Google Scholar
Llewellyn, RS, Powles, SB (2001) High levels of herbicide resistance in rigid ryegrass (Lolium rigidum) in the Wheat Belt of Western Australia. Weed Technol 15:242248 CrossRefGoogle Scholar
Mitchell, PD (2013) Market-level assessment of the economic benefits of atrazine in the United States. Pest: Manag Sci. DOI: Google Scholar
Mueller, TC, Mitchell, PD, Young, BG, Culpepper, AS (2005) Proactive versus reactive management of glyphosate-resistant or-tolerant weeds. Weed Technol 19:924933 CrossRefGoogle Scholar
Muller, G (2008) History of the discovery and development of triazine herbicides. Pages 1329 in LeBaron, HM, McFarland, JE, Burnside, O, eds. The Triazine Herbicides: 50 Years Revolutionizing Agriculture. San Diego: Elsevier Google Scholar
Norsworthy, JK, Burgos, NR, Scott, RC, Smith, KL (2007) Consultant perspectives on weed management needs in Arkansas rice. Weed Technol 21:832839 Google Scholar
Norsworthy, JK, Ward, S, Shaw, D, Llewellyn, R, Nichols, R, Webster, TM, Bradley, K, Frisvold, G, Powles, S, Burgos, N, Witt, W, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60:3162 Google Scholar
Pike, DR, Knake, EL, McGlamery, MD (2008) Weed control trends and practices in North America. Page 45 in LeBaron, HM, McFarland, JE, Burnside, O, eds. The Triazine Herbicides: 50 Years Revolutionizing Agriculture. San Diego: Elsevier Google Scholar
Porter, PM, Lauer, JG, Lueschen, WE, Ford, JH, Hoverstad, TR, Oplinger, ES, Crookston, RK (1997) Environment affects the corn and soybean rotation effect. Agron J 89:442448 Google Scholar
Postle, J, LeMasters, G, Morrison, L, Brook, JV, Larson, J (1997) Groundwater Protection: An Evaluation of Wisconsin's Atrazine Rule. Madison, WI: Wisconsin Department of Agriculture, Trade, and Consumer Protection ARM Pub 26B. 30 pGoogle Scholar
Recker, RA (2014) Influence of Atrazine on Weed Community Composition, Management, and the Risk of Glyphosate Resistance. . Madison, WI: University of Wisconsin-Madison. 120 pGoogle Scholar
Senseman, SA (2007) Herbicide Handbook. Lawrence, KS: Weed Science Society of America. 458 pGoogle Scholar
Shimabukuro, RH, Swanson, HR, Walsh, WC (1970) Glutathione conjugation atrazine detoxication mechanism in corn. Plant Physiol 46:103107 Google Scholar
Swanton, CJ, Clements, DR, Derksen, DA (1993) Weed succession under conservation tillage: a hierarchical framework for research and management. Weed Technol 7:286297 Google Scholar
Thomas, AG (1985) Weed survey system used in Saskatchewan for cereal and oilseed crops. Weed Sci 33:3443 Google Scholar
Tucker, KP, Morgan, GD, Senseman, SA, Miller, TD, Baumann, PA (2006) Identification, distribution, and control of Italian ryegrass (Lolium multiflorum) ecotypes with varying levels of sensitivity to triasulfuron in Texas. Weed Technol 20:745750 Google Scholar
[USDA–NASS] U.S. Department of Agriculture–National Agricultural Statistics Service (2014) Quick Stats. http://www.nass.usda.gov/Quick_Stats/index.php. Accessed April 8, 2014 Google Scholar
Walsh, MJ, Owen, MJ, Powles, SB (2007) Frequency and distribution of herbicide resistance in Raphanus raphanistrum populations randomly collected across the Western Australian wheatbelt. Weed Res 47:542550 Google Scholar
Williams, MM, Rabaey, TL, Boerboom, CM (2008) Residual weeds of processing sweet corn in the north central region. Weed Technol 22:64653 Google Scholar
[Wisconsin DATCP] Wisconsin Department of Agriculture Trade and Consumer Protection (2011). Final Report on the 2010 Survey of Weed Management Practices in Wisconsin's Atrazine Prohibition Areas. ARM Pub 215. 30 p http://datcp.wi.gov/uploads/Environment/pdf/WeedMgtAtrazinePAs.pdf. Accessed April 8, 2014Google Scholar
[Wisconsin DATCP] Wisconsin Department of Agriculture Trade and Consumer Protection (2012) ATCP 30 Appendix A: Atrazine Prohibition Areas. Pp 149256 Google Scholar
Wisconsin Department of Natural Resources (2012) NR 140: Groundwater Quality. Pp. 323336. http://docs.legis.wisconsin.gov/code/admin_code/nr/100/140.pdf. Accessed April 8, 2014Google Scholar
Young, BG (2006) Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol 20:301307 CrossRefGoogle Scholar