Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T21:09:18.419Z Has data issue: false hasContentIssue false

Management of ACCase-Inhibiting Herbicide-Resistant Smooth Barley (Hordeum glaucum) in Field Pea with Alternative Herbicides

Published online by Cambridge University Press:  20 January 2017

Lovreet S. Shergill*
Affiliation:
School of Agriculture, Food, and Wine, The University of Adelaide, PMB 1, Glen Osmond, South Australia, 5064
Benjamin Fleet
Affiliation:
School of Agriculture, Food, and Wine, The University of Adelaide, PMB 1, Glen Osmond, South Australia, 5064
Christopher Preston
Affiliation:
School of Agriculture, Food, and Wine, The University of Adelaide, PMB 1, Glen Osmond, South Australia, 5064
Gurjeet Gill
Affiliation:
School of Agriculture, Food, and Wine, The University of Adelaide, PMB 1, Glen Osmond, South Australia, 5064
*
Corresponding author's E-mail: lovreet.shergill@adelaide.edu.au.

Abstract

Smooth barley is an annual weed species that is infesting crops and pastures in South Australia. Complicating control options is the presence of herbicide-resistant biotypes. A field trial was conducted to identify alternative herbicides for the management of acetyl coenzyme A carboxylase (ACCase)-inhibiting herbicide-resistant smooth barley in field pea. Preplant (PP) soil applications of pyroxasulfone; prosulfocarb plus S-metolachlor; dimethenamid-P; propyzamide; trifluralin alone or with triallate or with diuron; or imazamox applied POST were evaluated for their effectiveness and crop safety. Propyzamide, pyroxasulfone, or imazamox applied POST provided a high level of smooth barley control, did not cause any crop injury, and increased field pea grain or forage yield compared with the nontreated. Furthermore, propyzamide or pyroxasulfone reduced panicle density and seed production in smooth barley, whereas the effectiveness of POST imazamox varied over the two seasons. Dimethenamid-P reduced the impact of smooth barley on field pea yield, but cause stunting, and was less effective than propyzamide, pyroxasulfone, and imazamox in reducing smooth barley seed production. Negative relationship between field pea yield and smooth barley panicle density indicated that smooth barley is highly competitive in field pea crops and can cause large yield losses. The results of this investigation suggest that propyzamide or pyroxasulfone applied PP and imazamox applied POST could be used effectively in the field for the management of ACCase-inhibiting herbicide-resistant smooth barley in South Australia.

Hordeum murinum ssp. glaucum es una especie de maleza anual que infesta cultivos y pasturas en el sur de Australia. Además, la presencia de biotipos resistentes a herbicidas complica las opciones de control. Se realizó un estudio de campo para identificar herbicidas alternativos para el manejo de H. murinum resistente a herbicidas inhibidores de acetyl coenzyme A carboxylase (ACCase) en guisante. Aplicaciones al suelo presiembra (PP) de pyroxasulfone, prosulfocarb más S-metolachlor, dimethenamid-P, propyzamide, trifluralin solo o con triallate o con diuron; o imazamox aplicado POST, fueron evaluados para determinar su efectividad y la seguridad en el cultivo. Propyzamide, pyroxasulfone, o imazamox aplicado POST brindaron un alto nivel de control de H. murinum, no causaron ningún daño al cultivo, e incrementaron el rendimiento de grano y de forraje del guisante al compararse con el testigo sin tratamiento. Además, propyzamide o pyroxasulfone redujeron la densidad de panículas y la producción de semilla de H. murinum, mientras que la efectividad de imazamox POST varió en las dos temporadas. Dimethenamid-P redujo el impacto de H. murinum sobre el rendimiento del cultivo, pero causó retrasos y redujo el crecimiento del cultivo, y fue menos efectivo que propyzamide, pyroxasulfone, e imazamox para reducir la producción de semilla de H. murinum. Una relación negativa entre el rendimiento del guisante y la densidad de panículas de H. murinum indicó que esta maleza es altamente competitiva en los campos de guisante y puede causar grandes pérdidas de rendimiento. Los resultados de esta investigación sugieren que propyzamide o pyroxasulfone aplicados PP e imazamox aplicado POST podrían ser usados en forma efectiva en el campo para el manejo de H. murinum resistente a herbicidas inhibidores de ACCase en el sur de Australia.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Mark VanGessel, University of Delaware.

References

Literature Cited

Anonymous (2015) Climate Data Online: Australian Bureau of Meteorology. http://www.bom.gov.au/climate/data/index.shtml. Accessed March 21, 2015Google Scholar
Beckie, HJ, Tardif, FJ (2012) Herbicide cross resistance in weeds. Crop Prot 35:1528 Google Scholar
Belair, G, Benoit, DL (1996) Host suitability of 32 common weeds to Meloidogyne hapla in organic soils of southwestern Quebec. J Nematol 28:643647 Google Scholar
Blackshaw, RE (1998) Postemergence weed control in pea (Pisum sativum) with imazamox. Weed Technol 12:6468 Google Scholar
Campbell, RJ, Robards, GE, Saville, DG (1972) The effect of grass seed on sheep production. Proc Aust Soc Anim Prod 9:225229 Google Scholar
Cocks, PS, Boyce, KG, Kloot, PM (1976) The Hordeum murinum complex in Australia. Aust J Bot 24:651–62Google Scholar
Davison, AW (1977) The ecology of Hordeum murinum L: III. Some effects of adverse climate. J Ecol 65:523530 Google Scholar
Fleet, B, Gill, G (2010) Barley grass, an emerging weed threat in southern Australian cropping systems. in Dove, H, Culvenor, R, eds. 15th Agronomy Conference. Lincoln, New Zealand Australian Society of Agronomy. http://www.regional.org.au/au/asa/2010/crop-production/weeds/7047_fleetb.htm. Accessed December 7, 2015Google Scholar
Fleet, B, Gill, G (2012) Seed dormancy and seedling recruitment in smooth barley (Hordeum murinum ssp. glaucum) populations in southern Australia. Weed Sci 60:394400 Google Scholar
Hashem, A, Collins, RM, Bowran, DG (2011) Efficacy of interrow weed control techniques in wide row narrow-leaf lupin. Weed Technol 25:135140 Google Scholar
Heap, I (2015) The International Survey of Herbicide-Resistant Weeds. http://weedscience.org. Accessed September 3, 2015Google Scholar
Kleemann, SGL, Gill, GS (2012) Herbicide application strategies for the control of rigid ryegrass (Lolium rigidum) in wide-row faba bean (Vicia faba) in southern Australia. Weed Technol 26:284288 Google Scholar
Lemerle, D, Verbeek, B, Coombes, N (1995) Losses in grain yield of winter crops from Lolium rigidum competition depend on crop species, cultivar and season. Weed Res 35:503509 Google Scholar
McDonald, GK (2003) Competitiveness against grass weeds in field pea genotypes. Weed Res 43:4858 Google Scholar
Nelson, KA, Renner, KA (1998) Weed control in wide- and narrow-row soybean (Glycine max) with imazamox, imazethapyr, and CGA-277476 plus quizalofop. Weed Technol 12:137144 Google Scholar
Owen, MJ, Goggin, DE, Powles, SB (2012) Identification of resistance to either paraquat or ALS-inhibiting herbicides in two Western Australian Hordeum leporinum biotypes. Pest Manag Sci 68:757763 Google Scholar
Preston, C (2009) Herbicide resistance: target site mutations. Pages 127148 in Stewart, CN, ed. Weedy and Invasive Plant Genomics. Oxford, UK: Wiley-Blackwell Google Scholar
Shergill, LS, Fleet, B, Preston, C, Gill, G (2015a) Incidence of herbicide resistance, seedling emergence, and seed persistence of smooth barley (Hordeum glaucum) in South Australia. Weed Technol 29:782792 Google Scholar
Shergill, LS, Malone, J, Boutsalis, P, Preston, C, Gill, GS (2015b) Target-site point mutations conferring resistance to ACCase-inhibiting herbicides in smooth barley (Hordeum glaucum) and hare barley (Hordeum leporinum). Weed Sci 63:408415 Google Scholar
Shergill, LS, Preston, C, Boutsalis, P, Malone, J, Gill, G (2014) Amino acid substitutions in ACCase gene of barley grass (Hordeum glaucum Steud.) associated with resistance to ACCase-inhibiting herbicides. Pages 710 in Proceedings of 19th Australasian Weeds Conference. Hobart, Tasmania, Australia Tasmanian Weed Society Google Scholar
Tidemann, BD, Hall, LM, Johnson, EN, Beckie, HJ, Sapsford, KL, Raatz, LL (2014) Efficacy of fall- and spring-applied pyroxasulfone for herbicide-resistant weeds in field pea. Weed Technol 28:351360 Google Scholar
Tranel, PJ, Wright, TR (2002) Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci 50:700712 Google Scholar
Vanstone, VA, Russ, MH (2001) Ability of weeds to host the root lesion nematodes Pratylenchus neglectus and P. thornei. I. Grass weeds. Australas Plant Pathol 30:245250 Google Scholar
Zadoks, JC, Chang, TT, Konzak, CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415421 Google Scholar