Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T09:07:25.640Z Has data issue: false hasContentIssue false

Mesotrione Combinations for Postemergence Control of Horsenettle (Solanum carolinense) in Corn (Zea mays)

Published online by Cambridge University Press:  20 January 2017

Gregory R. Armel
Affiliation:
Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, VA 23420
Henry P. Wilson*
Affiliation:
Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, VA 23420
Robert J. Richardson
Affiliation:
Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, VA 23420
Thomas E. Hines
Affiliation:
Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, VA 23420
*
Corresponding author's E-mail: hwilson@vt.edu

Abstract

Field and greenhouse studies were conducted near Painter, VA, in 1999, 2000, and 2001 to evaluate mesotrione postemergence for control of horsenettle in corn. Mesotrione at 105 g ai/ha controlled horsenettle at least 80% in all studies, and in 2001, after two consecutive annual applications, mesotrione controlled horsenettle up to 91%. Additions of primisulfuron, dicamba, and 2,4-D to mesotrione did not increase horsenettle control. Occasionally, combinations of dicamba with mesotrione controlled horsenettle less than did mesotrione alone, and primisulfuron combinations with mesotrione delayed or reduced development of bleaching symptoms associated with mesotrione. Initial horsenettle response to mesotrione was increased by addition of 280 g ai/ha atrazine; however, late-season horsenettle control was not improved by atrazine. Two consecutive annual applications of mesotrione alone decreased horsenettle biomass > 89%. Treatments of primisulfuron plus dicamba, primisulfuron plus CGA 152005 plus dicamba, and 2,4-D plus dicamba provided similar horsenettle control and biomass reductions as did 105 g/ha mesotrione alone.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahrens, W. H. ed. 1994. Herbicide Handbook. 7th ed. Champaign, IL: Weed Science Society of America. 352 p.Google Scholar
Armel, G. R., Wilson, H. P., and Hines, T. E. 2000a. Control of two perennial weeds with ZA 1296. Proc. N. Cent. Weed Sci. Soc. 55: 4748.Google Scholar
Armel, G. R., Wilson, H. P., and Hines, T. E. 2000b. Response of two perennial weeds with ZA 1296. Weed Sci. Soc. Am. Abstr. 40: 110–11.Google Scholar
Armel, G. R., Wilson, H. P., Richardson, R. R., and Hines, T. E. 2001. ZA 1296 combinations for control of grasses in corn. Weed Sci. Soc. Am. Abstr. 41: 84.Google Scholar
Banks, P. A. and Santelmann, P. W. 1978. Influence of subsurface layered herbicides on horsenettle and various crops. Agron. J. 70: 58.Google Scholar
Bassett, I. J. and Munro, D. B. 1986. The biology of Canadian weeds. 78. Solanum carolinense L. and S. rostratum Dunal. Can. J. Plant. Sci. 66: 977991.CrossRefGoogle Scholar
Beckett, T. H. and Taylor, S. E. 2000. Postemergence performance of mesotrione in weed control programs. Proc. N. Cent. Weed Sci. Soc. 55: 81.Google Scholar
Bradley, K. W., Davis, P., King, S. R., and Hagood, E. S. 2000. Trumpetcreeper, honeyvine milkweed, and hemp dogbane control with postemergence corn herbicides. Proc. Northeast. Weed Sci. Soc. 54: 59.Google Scholar
Donohue, S. J. and Heckendorn, S. E. 1994. Soil Test Recommendations for Virginia. Virginia Cooperative Extension Service Publication 834. Blacksburg, VA: Virginia Polytechnique Institute and State University.Google Scholar
Frank, J. R. 1990. Influence of horsenettle (Solanum carolinense) on snapbean (Phaseolus vulgaris). Weed Sci. 38: 220223.Google Scholar
Fritz, T. J., Curran, W. S., and Hartwig, N. L. 1992. Effectiveness of some newer herbicides on selected broadleaf perennial weeds in corn. Proc. Northeast. Weed Sci. Soc. 46: 3031.Google Scholar
Gorell, R. M., Bingham, S. W., and Foy, C. L. 1981. Control of horsenettle (Solanum Carolinense) fleshy roots in pastures. Weed Sci. 29: 586589.Google Scholar
Gorell, R. M., Bingham, S. W., and Foy, C. L. 1988. Translocation and fate of dicamba, picloram, and triclopyr in horsenettle, Solanum carolinense . Weed Sci. 36: 447452.CrossRefGoogle Scholar
Hackett, N. M., Murray, D. S., and Weeks, D. L. 1987. Interference of horsenettle (Solanum carolinense) with peanuts (Arachis hypogaea). Weed Sci. 35: 780784.Google Scholar
Hagood, E. S., Swann, C. W., Wilson, H. P., Ritter, R. L., Majek, B. A., Curran, W. S., and Chandran, R. 2001. Pest Management Guide: Field Crops. Grain Crops, Soybeans and Forages. Virginia Cooperative Extension Service Publication 456-016. Blacksburg, VA: Virginia Polytechnic Institute and State University.Google Scholar
Hart, S. E. and Wax, L. M. 1996. Dicamba antagonizes grass weed control with imazethapyr by reducing foliar absorption. Weed Technol. 10: 828834.CrossRefGoogle Scholar
Ilnicki, R. D., Tisdell, T. F., Fertig, S. N., and Furrer, A. H. Jr. 1962. Life History Studies Related to Weed Control in the Northeast. 3. Horsenettle. Rhode Island Agricultural Experimental Bulletin 368. 54 p.Google Scholar
Johnson, B. C. and Young, B. G. 1999. Effect of postemergence application rate and timing of ZA 1296 on weed control and corn response. Proc. N. Cent. Weed Sci. Soc. 54: 67.Google Scholar
Johnson, B. C. and Young, B. G. 2000. Effect of postemergence rate and timing of ZA 1296. Proc. N. Cent. Weed Sci. Soc. 55: 9.Google Scholar
Marcelli, M. and Glenn, S. 1993. Pokeweed and horsenettle control in no-tillage corn with CGA-136872 and DPX-V9360. Proc. Northeast. Weed Sci. Soc. 47: 204.Google Scholar
Mitchell, G., Bartlett, D. W., Fraser, T. E., Hawkes, T. R., Holt, D. C., Townson, J. K., and Wichert, R. A. 2001. Mesotrione: a new selective herbicide for use in maize. Pest Manag. Sci. 57: 120128.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Mueller, T. C. 2000. ZA 1296: a new mode of action for weed control in corn. Proc. South. Weed Sci. Soc. 53: 1.Google Scholar
Nichols, R. L., Cardina, J., and Gaines, T. P. 1991. Growth, reproduction, and chemical composition of horsenettle (Solanum carolinense). Weed Technol. 5: 513520.Google Scholar
Norris, S. R., Shen, X., and DellaPenna, D. 1998. Complementation of the arabidopsis pds1 mutant with the gene encoding p-hydroxyphenylpyruvate dioxygenase. Plant Phys. 117: 13171323.Google Scholar
Pallett, K. E., Little, J. P., Sheekey, M., and Veerasekaran, P. 1998. The mode of action of isoxaflutole. I. Physiological effects, metabolism, and selectivity. Pestic. Biochem. Physiol. 62: 113124.Google Scholar
Prostko, E. P., Ingerson-Mahar, J., and Majek, B. A. 1994. Postemergence horsenettle (Solanum carolinense) control in field corn (Zea mays). Weed Technol. 8: 441444.Google Scholar
Sutton, P. B., Foxon, G. A., Beraud, J. M., Anderdon, J., and Wichert, R. 1999. Integrated weed management systems for maize using mesotrione, nicosulfuron, and acetochlor. Proc. Brighton Crop Prot. Conf.—Weeds 225–230.Google Scholar
VanGessel, M. J. 1999. Control of perennial weed species as seedlings with soil-applied herbicides. Weed Technol. 13: 425428.Google Scholar
Viviani, F., Little, J. P., and Pallett, K. E. 1998. The mode of action of isoxaflutole. II. Characterization of the inhibition of carrot 4-hydroxyphenylpyruvate dioxygenase by the diketonitrile derivative of RPA 201772. Pestic. Biochem. Physiol. 62: 125134.Google Scholar
Wehtje, G., Wilcut, J. W., Hicks, T. V., and Sims, G. R. 1987. Reproductive biology and control of Solanum dimidiatum and Solanum carolinense . Weed Sci. 35: 356359.Google Scholar
Wichert, R. A. and Pastushok, G. 2000. Mesotrione—weed control with different adjuvant systems. Proc. N. Cent. Weed Sci. Soc. 55: 81.Google Scholar
Young, B. G., Hart, S. E., and Wax, L. M. 1996. Interactions of sethoxydim and corn (Zea mays) postemergence broadleaf herbicides on three annual species. Weed Technol. 10: 914922.CrossRefGoogle Scholar