Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T12:55:02.400Z Has data issue: false hasContentIssue false

Microbial Allelochemicals and Pathogens as Bioherbicidal Agents

Published online by Cambridge University Press:  20 January 2017

Robert E. Hoagland*
Affiliation:
USDA-ARS, Southern Weed Science Research Unit, P.O. Box 350, Stoneville, MS 38776

Abstract

The initiative to use plant pathogens and allelochemicals from pathogens and other microorganisms as biological weed control agents (bioherbicides) began about 30 yr ago. Since then, numerous plant pathogens (bacteria and fungi) and microbial allelochemicals have been isolated, identified, and tested for their bioherbicidal potential. Pathogens (and in some cases microbial phytotoxins) may be used directly on target weed species, or such allelochemicals may provide unique chemical templates for the synthesis of new herbicide classes with novel molecular modes of action. To date, the most successful microbial products that have led to the development of commercial herbicides are bialaphos (commercially available in Japan) and glufosinate (marketed worldwide). Glufosinate is the ammonium salt of phosphinothricin, which is the active ingredient of bialaphos derived from a nonphytopathogenic Streptomyces species. This overview will examine selected advances in the isolation and identification of novel plant pathogens that have weed hosts, and some microbial allelochemicals with phytotoxic properties. Perspectives on the use of these bioherbicides in weed control, relative to their allelopathic interactions with plants will be discussed.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abbas, H. K. and Boyette, C. D. 1992. Phototoxicity of fumonisin B1 on weed and crop species. Weed Technol. 6: 548552.Google Scholar
Abbas, H. K. and Boyette, C. D. 1996. Control of morningglory species using Fusarium solani and its extracts. Int. J. Pestic. Manag. 42: 235239.Google Scholar
Abbas, H. K., Boyette, C. D., and Hoagland, R. E. 1991. Bioherbicidal potential of Fusarium moniliforme and its phytotoxin, fumonisin. Weed Sci. 39: 673677.Google Scholar
Abbas, H. K., Boyette, C. D., and Hoagland, R. E. 1995a. Phytotoxicity of Fusarium, other fungal isolates, and of the phytotoxins fumonisin, fusaric acid and moniliformin to jimsonweed. Phytoprotection 76: 1725.Google Scholar
Abbas, H. K., Duke, S. O., Shier, W. T., Badria, F. A., Ocamb, C. M., Woodward, R. P., Xie, W., and Mirocha, C. J. 1997. Comparison of ceramide synthase inhibitors with other phytotoxins produced by Fusarium species. J. Nat. Toxins 6: 163181.Google Scholar
Abbas, H. K., Gelderblom, W.C.A., Cawood, M. F., and Shier, W. T. 1993a. Biological activities of fumonisins, mycotoxins from Fusarium moniliforme, in jimsonweed (Datura stramonium L.) and mammalian cell cultures. Toxicon 31: 345353.Google Scholar
Abbas, H. K., Mirocha, C. J., Kommedahl, T., Vesonder, R. F., and Golinski, P. 1989. Production of trichothecene and non-trichothecene mycotoxins by Fusarium species isolated from maize in Minnesota. Mycopathologia 108: 5558.Google Scholar
Abbas, H. K., Paul, R. N., Boyette, C. D., Duke, S. O., and Vesonder, R. F. 1992a. Physiological and ultrastructural effects of fumonisin on jimsonweed leaves. Can. J. Bot. 70: 18241833.CrossRefGoogle Scholar
Abbas, H. K. and Shier, W. T. 1997. Phytotoxicity of australifungin and fumonisins to weeds. Brighton Crop Prot. Conf.—Weeds 8C-7. 2: 795800.Google Scholar
Abbas, H. K., Shier, W. T., Seo, J. A., Lee, Y. W., and Musser, S. M. 1998. Phytotoxicity and cytotoxicity of the fumonisins C and P series of mycotoxins from Fusarium spp. fungi. Toxicon 36: 20332037.Google Scholar
Abbas, H. K., Tanaka, T., and Duke, S. O. 1995b. Pathogenicity and/or phytotoxicity of Alternaria alternata and its AAL-toxin, Fusarium moniliforme and its fumonisin B1 on tomato varieties. J. Phytopathol. 143: 329334.Google Scholar
Abbas, H. K., Vesonder, R. F., Boyette, C. D., Hoagland, R. E., and Krick, T. 1992b. Production of fumonisins by Fusarium moniliforme cultures isolated from jimsonweed in Mississippi. J. Phytopathol. 136: 199203.CrossRefGoogle Scholar
Abbas, H. K., Vesonder, R. F., Boyette, C. D., and Peterson, S. W. 1993b. Phytotoxicity of AAL-toxin and other compounds produced by Alternaria alternata to jimsonweed (Datura stramonium). Can. J. Bot. 71: 155160.Google Scholar
Acaster, M. A. and Weitzmann, P.D.J. 1985. Kinetic analysis of glutamine synthetase from various plants. FEBS Lett. 189: 241244.Google Scholar
Alberts, A. W., Chen, J., Kuron, G., et al. 1980. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. USA 77: 39573961.Google Scholar
Altman, J., Neate, S., and Rovira, A. D. 1990. Herbicide-pathogen interactions and mycoherbicides as alternative strategies for weed control. In Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides. Am. Chem. Soc. Symp. Ser. No. 439. Washington, DC: ACS Books. pp. 240259.Google Scholar
Amagasa, T., Paul, R. N., Heitholt, J. J., and Duke, S. O. 1993. Physiological effects of cornexistin on Lemna pausicostata . Pestic. Biochem. Physiol. 49: 3752.Google Scholar
American Hoechst Corp. 1982. HOE-00661 Technical Information Bulletin AMF 2464. Somerville, NJ.Google Scholar
Anonymous. 1989. Discovery and development of plant pathogens for biological control of weeds. Plant Pathology Department, University of Florida, Gainesville, FL: Reg. Res. Proj. SRCS 8801 (S-136). 44 p.Google Scholar
Auld, B. A. and Morin, L. 1995. Constraints in the development of bioherbicides. Weed Technol. 9: 638652.Google Scholar
Auld, B. A., Schrauwen, J.M.A., Talbot, H. E., and Raburn, K. B. 1994. Interaction between Colletotrichum obiculare and Alternaria zinniae or a Phomopsis sp. on Xanthium spinosum . Plant Prot. Q. 9: 8687.Google Scholar
Avni, A., Anderson, J. D., Holland, N., Rochaix, J.-D., Gromet-Elhanan, A., and Edelman, M. 1992. Tentoxin sensitivity of chloroplast determined by codon 83 of B subunit of proton-ATPase. Science 257: 12451247.Google Scholar
Babczinski, P., Dorgerloh, M., Löbberding, A., Santel, H. J., Schmidt, R. R., Schmitt, P., and Wünsche, C. 1991. Herbicidal activity and mode of action of vulgamycin. Pestic. Sci. 33: 439446.Google Scholar
Bach, T. J. 1981. Untersuchungen zur charakterisierung und regulation der 3-hydroxy-3-methyl-glutaryl-coenzyme A reduktase (mevalonat: NADP + oxidoreduktase, CoA acylierend, E. C. 1.1.1.34) in kemlingen von Raphanus sativus . Karlsr. Beitr. Pflanzenphysiol. 10: 1219.Google Scholar
Bach, T. J. and Lichtenthaler, H. K. 1982a. Mevinolin: a highly specific inhibitor of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase of radish plants. Z. Naturforsch. Teil C 37: 4650.Google Scholar
Bach, T. J. and Lichtenthaler, H. K. 1982b. Inhibition by mevinolin of mevalonate formation and plant root elongation. Naturwissenschaften 69: 242.Google Scholar
Bains, P. S. and Tewari, J. P. 1987. Purification, chemical characterization and host-specificity of the toxin produced by Alternaria brassicae . Physiol. Mol. Plant Pathol. 30: 259271.Google Scholar
Barrett, S.C.H. 1982. Genetic variation in weeds. In Charudattan, R. and Walker, H. L., eds. Biological Control of Weeds with Plant Pathogens. New York: J. Wiley. pp. 7398.Google Scholar
Bartsch, K. and Tebbe, C. 1989. Initial steps in the degradation of phosphinothricin (glufosinate) by soil bacteria. Appl. Environ. Microbiol. 55: 711716.Google Scholar
Basset, W. L., Wiggins, J. R., Gleb, H., and Pressman, B. C. 1978. Monensin potentiation of potassium contracture in cat myocardium. J. Pharmacol. Exp. Ther. 207: 966975.Google Scholar
Baudoin, A.B.A.M. 1986. First report on Dichotomophthora indica on common purslane in Virginia. Plant Dis. 70:352.Google Scholar
Bayer, E., Gugel, K. H., Hägele, K., Hagenmaier, H., Jessipow, S., König, W. A., and Zähner, H. 1972. Phosphinothricin und phosphinothricyl-alanyl-alanin. Helv. Chim. Acta 55: 224239.Google Scholar
Behrendt, H., Matthies, M., Gildemeister, H., and Görletz, G. 1990. Leaching and transformation of glufosinate-ammonium and its main metabolite in a layered soil column. Environ. Toxicol. Chem. 9: 541549.Google Scholar
Berg, D., Schedel, M., Schmidt, R. R., Ditgens, K., and Weyland, H. 1982. Naramycin B, an antibiotic from Streptomyces griseus strain 587 with herbicidal properties: fermentation, isolation, and identification. Z. Naturforsch. Teil C 37: 11001106.Google Scholar
Bernhardt, E. A. and Duniway, J. M. 1986. Decay of pondweed and Hydrilla hybernacula by fungi. J. Aquat. Plant Manag. 24: 2024.Google Scholar
Bezuidenhout, S. C., Gelderblom, W.C.A., Gorst-Allman, C. P., Horak, R. M., Marasas, W.E.O., Spiteller, G., and Vleggaar, R. 1988. Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme . J. Chem. Soc. Chem. Commun. 1984: 743745.Google Scholar
Bobylev, M. M., Bobyleva, L. I., Cutler, H. G., Cutler, S. J., and Strobel, G. A. 1999a. Growth regulating activity of maculosin analogs in etiolated wheat coleoptile bioassay (Tritcum aestivum L. cv. Wakeland). Plant Growth Regul. Soc. Am. Q. 27: 105118.Google Scholar
Bobylev, M. M., Bobyleva, L. I., and Strobel, G. A. 1996. Synthesis and bioactivity of analogs of maculosin, a host specific phytotoxin produced by Alternaria alternata on spotted knapweed (Centaurea maculosa). J. Agric. Food Chem. 44: 39603964.Google Scholar
Bobylev, M. M., Bobyleva, L. I., and Strobel, G. A. 1999b. Natural products containing phenylalanine as potential bioherbicides. In Cutler, H. G. and Cutler, S. J., eds. Biologically Active Natural Products: Agrochemicals. Boca Raton, FL: CRC Press. pp. 169174.Google Scholar
Böger, P. and Sandmann, G., eds. 1989. Target Sites of Herbicide Action. Boca Raton, FL: CRC Press.Google Scholar
Boyette, C. D. 1988. Biocontrol of three leguminous weed species with Alternaria cassiae . Weed Technol. 2: 414417.Google Scholar
Boyette, C. D. and Abbas, H. K. 1994. Host range alteration of the bioherbicidal fungus Alternaria crassa with fruit pectin and plant filtrates. Weed Sci. 42: 487491.Google Scholar
Boyette, C. D., Quimby, P. C. Jr., Caesar, A. J., Birdsall, J. L., Connick, W. J. Jr., Daigle, D. J., Jackson, M. A., Egley, G. H., and Abbas, H. K. 1996. Adjuvants, formulations, and spraying systems for improvement of mycoherbicides. Weed Technol. 10: 637644.CrossRefGoogle Scholar
Broer, I., Arnold, W., Wohlleben, W., and Pühler, A. 1989. The phosphinothricin N-acetyltrnsferase gene as a selection marker for plant genetic engineering. In Galling, G., ed. Proc. Braunschweig Symp. Appl. Plant Mol. Biol. pp. 240246. Braunschweig, Germany: Tech. Univ. Braunschweig.Google Scholar
Brooker, N. L., Mischke, C. F., Patterson, C. D., Mischke, S., Bruckart, W. L., and Lydon, J. 1996. Pathogenicity of bar-transformed Colletotrichum gloeosporioides f. sp. aeschynomene . Biol. Control 7: 159166.Google Scholar
Brosten, B. S. and Sands, D. C. 1986. Field trials of Sclerotinia sclerotiorum to control Canada thistle (Cirsium arvense). Weed Sci. 34: 377380.Google Scholar
Brown, A. G., Samle, T. C., King, T. J., Hasenkemp, R., and Thompson, R. H. 1976. Crystal and molecular structure of compactin: a new antifungal metabolite from Penicillium brevicompactum . J. Chem. Soc. Perkin. Trans. I, 11651170.Google Scholar
Brown, M. S. and Goldstein, J. L. 1980. Multivalent feedback regulation of HMG CoA reductase: a control mechanism coordinating isoprenoid synthesis and cell growth. J. Lipid Res. 21: 505517.CrossRefGoogle ScholarPubMed
Buchwaldt, L. and Green, H. 1992. Phytotoxicity of destruxin B and its possible role in the pathogenesis of Alternaria brassicae . Plant. Pathol. 41: 5563.Google Scholar
Buchwaldt, L. and Jenson, J. S. 1991. HPLC purification of destruxins produced by Alternaria brassicae in cultures and in leaves of Brassica napus. Assignment of the 1H- and 13C-NMR spectra by 1D- and 2D-techniques. Phytochemistry 30: 23112316.CrossRefGoogle Scholar
Burk, L. G. and Durbin, R. D. 1978. The reaction of Nicotiana species to tentoxin. J. Hered. 69: 117120.Google Scholar
Cardina, J., Littrell, R. H., and Hanlin, R. T. 1988. Anthracnose of Florida beggarweed (Desmodium tortuosum) caused by Colletotrichum truncatum . Weed Sci. 36: 329334.Google Scholar
Caulder, J. D. and Stowell, L. 1988. U.S. Patent 4,766,873. 18 p.Google Scholar
Charudattan, R. 1985. The use of natural and genetically altered strains of pathogens for weed control. In Hoy, M. A. and Herzog, D. C., eds. Biological Control in Agricultural IPM Systems. New York: Academic Press. pp. 347372.Google Scholar
Charudattan, R. 1986. Integrated control of waterhyacinth (Eichhornia crassipes) with a pathogen, insects, and herbicides. Weed Sci. 34 (Suppl. 1): 2630.Google Scholar
Charudattan, R. 1990. Pathogens with potential for weed control. In Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides. Am. Chem. Soc. Symp. Ser. No. 439, Washington, DC: ACS Books. pp. 132154.Google Scholar
Charudattan, R. 1991. The mycoherbicide approach with plant pathogens. In TeBeest, D. O., ed. Microbial Control of Weeds. New York: Chapman and Hall. pp. 2457.CrossRefGoogle Scholar
Charudattan, R., Prange, V. J., and Devalerio, J. T. 1996. Exploration of the use of the “bialaphos genes” for improving bioherbicide efficacy. Weed Technol. 10: 625636.Google Scholar
Charudattan, R., Walker, H. L., Boyette, C. D., Ridings, W. H., TeBeest, D. O., Van Dyke, C. G., and Worsham, A. D. 1986. Evaluation of Alternaria cassiae as a mycoherbicide for sicklepod (Cassia obtusifolia) in regional field test. Auburn, AL: Alabama Agric. Exp. Station South. Coop. Ser. Bull. 317. 19 p.Google Scholar
Chen, J., Miroscha, C. J., Xie, W., Hogge, L., and Olson, D. 1992. Production of the mycotoxin fumonisin B1 by Alternaria alternata f. sp. lycopersici . Environ. Microbiol. 58: 39283931.Google Scholar
Chiang, M. Y., Leonard, K. J., and van Dyke, C. G. 1989a. Bipolaris halepense: a new species from Sorghum halepense (johnsongrass). Mycologia 81: 532538.Google Scholar
Chiang, M. Y., van Dyke, C. G., and Chilton, W. S. 1989b. Four foliar pathogenic fungi for controlling seedling johnsongrass (Sorghum halapense). Weed Sci. 37: 802809.Google Scholar
Christy, A. L., Herbst, K. A., Kostka, S. J., Mullen, J. P., and Carlson, P. S. 1993. Synergizing weed biocontrol agents with chemical herbicides. In Duke, S. O., Menn, J. J., and Plimmer, J. R., eds. Pest Control with Enhanced Environmental Safety. Am. Chem. Soc. Symp. Ser. No. 524. Washington, DC: ACS Books. pp. 87100.Google Scholar
Cocucci, S. M., Morgotti, S., Cocucci, M., and Gianani, L. 1983. Effects of ophiobolin A on potassium permeability, transmembrane potential and proton exstrusion in maize roots. Plant Sci. Lett. 32: 916.Google Scholar
Connick, W. J. Jr., Lewis, J. A., and Quimby, P. C. Jr. 1990. Formulation of biocontrol agents for use in plant pathology. In Baker, R. R. and Dunn, P. E., eds. New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases. New York: Alan R. Liss. pp. 345372.Google Scholar
Cook, R. J., Bruckart, W. R., Coulson, J. R., et al. 1996. Safety of microorganisms intended for pest and plant disease control: a framework for scientific evaluation. Biol. Control 7: 333351.Google Scholar
Crowley, D. K., Walker, H. L., and Riley, J. A. 1985. Interaction of Alternaria macrospora and Fusarium lateritium on spurred anoda. Plant Dis. 69: 977979.Google Scholar
Cutler, H. G. 1986. Isolating, characterizing, and screening mycotoxins for herbicidal activity. In Putnam, A. R. and Tang, D. S., eds. The Science of Allelopathy. New York: Wiley-Interscience. pp. 147170.Google Scholar
Cutler, H. G. 1988. Perspectives on the discovery of microbial phytotoxins with herbicidal activity. Weed Technol. 2: 525532.Google Scholar
Cutler, H. G. 1991. Phytotoxins of microbial origin. In Keeler, R. F. and Tu, A. T., eds. Handbook of Natural Toxins. Volume 6. Toxicology of Plant and Fungal Compounds. New York: Marcel Dekker. pp. 411438.Google Scholar
Cutler, S. J., Hoagland, R. E., and Cutler, H. G. 2000. Evaluation of selected pharmaceuticals as potential herbicides: bridging the gap between agrochemicals and pharmaceuticals. In Narwal, S. S., Hoagland, R. E., Dilday, R. H., and Reigosa, M. J., eds. Allelopathy in Ecological Agriculture and Forestry. Boston, MA: Kluwer Academic. pp. 129137.Google Scholar
Daigle, D. J. and Connick, W. J. Jr. 1990. Formulation and application technology for microbial weed control. In Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides. Am. Chem. Soc. Symp. Ser. No. 439. Washington, DC: ACS Books. pp. 288304.Google Scholar
Daigle, D. J., Connick, W. J., Quimby, P. C. Jr., Evans, J., Trask-Morrell, B., and Fulgham, F. E. 1990. Invert emulsion: carrier and water source for the mycoherbicide Alternaria cassiae . Weed Technol. 4: 327331.Google Scholar
D'Alton, A. and Etherton, B. 1984. Effects of fusaric acid on tomato root hair membrane potentials and ATP levels. Plant Physiol. 74: 3942.Google Scholar
Daniel, J. T., Templeton, G. E., Smith, R. J., and Fox, W. T. 1973. Biological control of northern jointvetch in rice with an endemic fungal disease. Weed Sci. 21: 303307.Google Scholar
Daub, M. E. and Ehrenshaft, M. 1993. The photoactivated toxin cercosporin as a tool in fungal photobiology. Physiol. Plant. 89: 227236.Google Scholar
Deak, M., Donn, G., Feher, A., and Dudits, D. 1988. Dominant expression of a gene amplification-related herbicide resistance in Medicago cell hybrids. Plant Cell Rep. 7: 1581–1561.Google Scholar
DeBlock, M., Botterman, J., Vanderwiele, M., et al. 1987. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. Eur. Mol. Biol. Org. J. 6: 25132518.Google Scholar
De Datta, S. K. 1981. Principles and Practices of Rice Production. New York: Wiley International. 618 p.Google Scholar
DeFrank, J. and Putnam, A. R. 1985. Screening procedures to identify soilborne Actinomycetes that can produce herbicidal compounds. Weed Sci. 33: 271274.CrossRefGoogle Scholar
de Jong, M. D., Scheepens, P. C., and Zadoks, J. C. 1990. Risk analysis for biological control: a dutch case study in biocontrol of Prunus serotina by the fungus Chodrostereum purpureum . Plant Dis. 74: 189194.CrossRefGoogle Scholar
de Jong, M. D., Wagenmakers, P. S., and Goudriaan, J. 1991. Modelling the escape of Chodrostereum purpureum spores from a larch forest with biological control of Prunus serotina . Neth. J. Plant Pathol. 97: 5561.Google Scholar
de Nooij, M. P. 1988. The role of weevils in the infection process of the fungus Phomopsissubordinaria in Plantago lanceolata . Oikos 52: 5158.Google Scholar
Deshpande, B. S., Ambedkar, S. S., and Shewale, J. G. 1988. Biologically active secondarymetabolites from Streptomyces . Enzyme Microbiol. Technol. 10: 455473.Google Scholar
Dinoor, A. and Eshed, N. 1984. The role and importance of pathogens in natural plant communities. Annu. Rev. Phytopathol. 22: 443466.Google Scholar
Dorgerloh, M., Löbberding, A., and Schmidt, R. R. 1990. German Pat. Appl. (Bayer AG) DE 3827263 A1.Google Scholar
Dröge, W., Broer, I., and Pühler, A. 1992. Transgenic plants containing the phosphinothricin-N-acetyl transferase gene metabolize the herbicide L-phosphinothricin (glufosinate) differently from untransformed plants. Planta 187: 142151.Google Scholar
Duke, S. O. 1986a. Naturally occurring chemical compounds as herbicides. Rev. Weed Sci. 2: 1544.Google Scholar
Duke, S. O. 1986b. Microbially produced phytotoxins as herbicides—a perspective. In Putnam, A. R. and Tang, D. S., eds. The Science of Allelopathy. New York: Wiley-Interscience. pp. 287304.Google Scholar
Duke, S. O. 1990. Overview of herbicide mechanisms of action. Environ. Health Perspect. 87: 262271.Google Scholar
Duke, S. O., Duke, M. V., Sherman, T. D., and Nandihalli, U. B. 1991. Spectrophotometric and spectrofluorometric methods in weed science. Weed Sci. 39: 505513.Google Scholar
Duke, S. O., Gohbara, M., Paul, R. N., and Duke, M. V. 1992. Colletotrichin causes rapid membrane damage to plants. J. Phytopathol. 134: 289305.Google Scholar
Duke, S. O. and Lane, A. D. 1984. Phytochrome control of leaf expansion and phytochrome accumulation in norflurazon and tentoxin-treated mung bean leaves. Physiol. Plant. 60: 341346.Google Scholar
Duke, S. O. and Vaughn, K. C. 1982. Lack of involvement of polyphenol oxidase in ortho-hydroxylation of phenolic compounds in mung bean seedlings. Physiol. Plant. 54: 381385.Google Scholar
Duke, S. O., Vaughn, K. C., and Meusen, R. L. 1984. Mitochondrial involvement in the mode of action of acifluorfen. Pestic. Biochem. Physiol. 21: 368376.Google Scholar
Durbin, R. D. and Uchytil, T. F. 1977. A survey of plant insensitivity to tentoxin. Phytopathology 67: 602603.Google Scholar
Dyer, W. E. 1996. Techniques for producing herbicide-resistant crops. In Duke, S. O., ed. Herbicide-Resistant Crops. Boca Raton, FL: CRC Press. pp. 3751.Google Scholar
Egley, G. H. and Boyette, C. D. 1995. Water-corn oil emulsion enhances conidia germination and mycoherbicidal activity of Colletotrichum truncatum . Weed Sci. 43: 312317.Google Scholar
Elliott, I. and Lynch, J. M. 1984. Pseudomonads as a factor in growth of winter wheat (Triticum aestivum L.). Soil Biol. Biochem. 16: 6971.Google Scholar
Evans, H. and Ellison, C. 1988. Preliminary work on the development of a mycoherbicide to control Rottboellia cochinchinensis . In DelFosse, E. S., ed. Proc. VII Int. Symp. Biol. Control Weeds. 1st Sper. Patol. Veg. (MAF), Rome. 76 p.Google Scholar
Feld, A., Kobek, K., and Lichtenthaler, H. K. 1989. Inhibition of de novo fatty-acid biosynthesis in isolated chloroplasts by different antibiotics and herbicides. Z. Naturforsch. Teil C 44: 976978.Google Scholar
Figliola, S. S., Camper, N. D., and Ridings, W. H. 1988. Potential biocontrol agents for goosegrass (Eleucine indica). Weed Sci. 36: 830835.Google Scholar
Fischer, H.-P. and Bellus, D. 1983. Phytotoxicants from microorganisms and related compounds. Pestic. Sci. 14: 334346.Google Scholar
Fonvielle, J.-L., Razki, A., Touze-Soulet, J. M., Dargent, R., and Rami, J. 1991. Effect of monensin on the lipid composition of Achyla bisexualis . Mycology 95: 480483.Google Scholar
Francey, Y., Gacquet, J. P., Gairoli, S., Buchala, A. J., and Meier, H. 1989. The biosynthesis of β-glucans in cotton (Gossypium hirsutum L.) fibers of ovules cultured in vitro . J. Plant Physiol. 134: 485491.Google Scholar
Gabriel, D. W. 1991. Parasitism, host species specificity, and gene-specific host cell death. In TeBeest, D. O., ed. Microbial Control of Weeds. New York: Chapman and Hall. pp. 115131.Google Scholar
Gallina, M. A. and Stephenson, G. R. 1992. Dissipation of 14C-glufosinate ammonium in two Ontario soils. J. Agric. Food Chem. 40: 165168.Google Scholar
Gelderblom, W.C.A., Jaskiewicz, M. K., Theil, W.F.O., Horak, P. G., Fleggaar, R. M., and Kriek, N.P.J. 1988. Fumonisins—novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme . Appl. Environ. Microbiol. 54: 18061811.Google Scholar
Gilchrist, D. G. 1983. Molecular modes of action. In Daly, J. M. and Deverall, B. J., eds. Toxins and Plant Pathogenesis. New York: Academic Press. pp. 81136.Google Scholar
Giovanelli, J., Owens, L., and Mudd, S. 1971. Mechanism of inhibition of β-cystathionase by rhizobitoxin. Biochem. Biophys. Acta 227: 671684.Google Scholar
Gohbara, M., Kosuge, Y., Yamaaki, S., Kimura, Y., Suzuki, A., and Tamura, S. 1978. Isolation, structures and biological activities of colletotrichins, phytotoxic substances from Colletotrichum nicotianae . Agric. Biol. Chem. 42: 10371043.Google Scholar
Goodrich, R. D., Garrett, J. D., Gast, D. R., Kirick, M. A., Lanson, D. A., and Meiske, J. C. 1984. Influence of monensin on the performance of cattle. J. Anim. Sci. 58: 14841498.Google Scholar
Grant, N. T., Prusinkiewicz, E., Makowski, R.M.D., Holmström-Ruddick, B., and Mortensen, K. 1990a. Effect of selected pesticides on survival of Colletotrichum gloeosporioides f. sp. malvae, a bioherbicide for round-leaved mallow (Malva pusilla). Weed Technol. 4: 701715.Google Scholar
Grant, N. T., Prusinkiewicz, E., Mortensen, K., and Makowski, R.M.D. 1990b. Herbicide interactions with Colletotrichum gloeosporioides f. sp. malvae, a bioherbicide for round-leaved mallow (Malva pusilla). Weed Technol. 4: 716723.Google Scholar
Greaves, M. P. and Sargent, J. A. 1986. Herbicide induced microbial invasion of plant roots. Weed Sci. 34 (Suppl. 1): 5053.Google Scholar
Greenspan, M. D., Yudkovitz, J. B., Lo, C.-Y., et al. 1987. Inhibition of hydroxymethylglutaryl-coenzyme A synthase by L-659,699. Proc. Natl. Acad. Sci. USA 87: 74887492.Google Scholar
Gutierrez-Lugo, M. T., Lotina-Hennsen, B., Farres, A., Sanchez, S., and Mata, R. 1999. Phytotoxic and photosynthetic activites of maduramicin and maduramicin methyl ester. Z. Naturforsch. Teil C 54: 325332.Google Scholar
Haraguchi, H., Hamatani, Y., Hamada, M., and Tachino, A. 1996. Effect of gliotoxin on growth and branched-chain amino acid biosynthesis in plants. Phytochemistry 42: 645648.Google Scholar
Haraguchi, H., Yamano, K., Kusunoki, N., and Fukuda, A. 1997. Effect of gliotoxin and related compounds on acetolacate synthase. J. Agric. Food Chem. 45: 27842787.Google Scholar
Harman, G. E. and Stasz, T. E. 1991. Protoplast fusion for the production of superior biocontrol fungi. In TeBeest, D. O., ed. Microbial Control of Weeds. New York: Chapman and Hall. pp. 171186.Google Scholar
Harris, P. 1993. Effects, constraints, and the future of weed biocontrol. Agric. Ecosyst. Environ. 46: 289303.Google Scholar
Hartman, P. E., Dixon, W. J., Dahl, T. A., and Daub, M. E. 1988. Multiple modes of photodynamic action by cercosporin. Phytochem. Photobiol. 47: 699703.Google Scholar
Hasan, S. 1972. Specificity and host specialization of Puccinia chondrillina . Ann. Appl. Biol. 72: 257263.Google Scholar
Hasan, S. 1988. Biocontrol of weeds with microbes. In Mukerji, K. G. and Garg, K. L., eds. Biocontrol of Plant Diseases. Boca Raton, FL: CRC Press. pp. 129151.Google Scholar
Hata, S., Takagishi, H., Egawa, Y., and Ota, Y. 1986. Effects of compactin, a 3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitor, on the growth of alfalfa (Medicago sativa) seedlings and the rhizogenesis of pepper (Capsicum annuum) explants. Plant Growth Regul. 4: 335346.Google Scholar
Heisey, R. M., DeFrank, J., and Putnam, A. R. 1985. A survey of soil microorganisms for herbicidal activity. In Thompson, A. C., ed. The Chemistry of Allelopathy. Am. Chem. Soc. Symp. Ser. No. 268. Washington, DC: ACS Books. pp. 337349.Google Scholar
Heisey, R. M. and Putnam, A. R. 1986. Herbicidal effects of geldanamycin and nigericin, antibiotics from Streptomyces hygroscopicus . J. Nat. Prod. 49: 859865.Google Scholar
Heisey, R. M. and Putnam, A. R. 1990. Herbicidal activity of the antibiotics geldanamycin and nigericin. J. Plant Growth Regul. 9: 1925.Google Scholar
Hoagland, R. E. 1990a. Microbes and microbial products as herbicides. In Hoagland, R. E., ed. Am. Chem. Soc. Symp. Ser. No. 439. Washington, DC: ACS Books. 341 p.Google Scholar
Hoagland, R. E. 1990b. Microbes and microbial products as herbicides: an overview. In Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides. Am. Chem. Soc. Symp. Ser. No. 439. Washington, DC: ACS Books. pp. 252.Google Scholar
Hoagland, R. E. 1996a. Chemical interactions with bioherbicides to improve efficacy. Weed Technol. 10: 651674.Google Scholar
Hoagland, R. E. 1996b. Herbicidal properties of the antibiotic monensin. J. Sci. Food Agric. 70: 373379.3.0.CO;2-P>CrossRefGoogle Scholar
Hoagland, R. E. 1999a. Allelopathic interactions of plants and pathogens. In Macías, F. A., Galindo, J.C.G., Molinillo, J.M.G., and Cutler, H. C., eds. Recent Advances in Allelopathy. Volume 1. Cadiz, Spain: Servicio De Publicationes Universidad De Cadiz. pp. 423450.Google Scholar
Hoagland, R. E. 1999b. Biochemical interactions of the microbial phytotoxin phosphinothricin and analogs with plants and microbes. In Cutler, H. G. and Cutler, S. J., eds. Biologically Active Natural Products. Boca Raton, FL: CRC Press. pp. 108125.Google Scholar
Hoagland, R. E. 2000. Plant pathogens and microbial products as agents for biological weed control. In Tewari, J. P., Lakhanpal, T. N., Singh, J., Gupta, R., and Chamola, B. P., eds. Advances in Microbial Biotechnology. New Delhi, India: APH Publishing. pp. 213255.Google Scholar
Hoagland, R. E. 2001a. Bioherbicides: phytotoxic natural products. In Baker, D. R. and Umetsu, N. K., eds. Agrochemical Discovery: Insect Weed and Fungal Control. Am. Chem. Soc. Symp. Ser. 774. Washington, DC: ACS Books. pp. 7290.Google Scholar
Hoagland, R. E. 2001b. The genus Streptomyces: a rich source of novel phytotoxins. In Prakash, I., ed. Ecology of Desert Environments. Jodhpur, India: Scientific Publishers. pp. 139169.Google Scholar
Hoagland, R. E. and Abbas, H. K. 1995. Phytotoxicity of Fusarium spp. and their natural products. Proc. Plant Growth Regul. Soc. Am. pp. 109114.Google Scholar
Hoagland, R. E. and Cutler, S. J., 2000. Plant and microbial compounds as herbicides. In Narwal, S. S., Hoagland, R. E., Dilday, R. H., and Reigosa, M. J., eds. Allelopathy Ecological Agriculture and Forestry. Boston, MA: Kluwer Academic. pp. 7399.Google Scholar
Hodgson, R. H., Wymore, L. A., Watson, A. K., Snyder, R. H., and Collette, A. 1988. Efficacy of Colletotrichum coccodes and thidiazuron for velvetleaf (Abutilon theophrasti) control in soybean (Glycine max). Weed Technol. 2: 473480.Google Scholar
Hoerlein, G. 1994. Glufosinate (phosphinothricin), a natural amino acid with unexpected herbicidal properties. Rev. Environ. Contam. Toxicol. 138: 73145.Google Scholar
Hofmeister, F. M. and Charudattan, R. 1987. Pseudocercospora nigricans, a pathogen of sicklepod (Cassia obtusifolia) with biocontrol potential. Plant Dis. 71: 4446.Google Scholar
Holcomb, G. E., Jones, J. P., and Wells, D. W. 1989. Blight of prostrate spurge and cultivated poinsettia, caused by Amphobotrys ricini . Plant Dis. 73: 7475.Google Scholar
Hoppe, H.-H. 1997. Fungal phytotoxins. In Hartleb, H., Heitefuss, R., and Hoppe, H.- H., eds. Resistance of Crop Plants to Fungi. Jena, Germany: Fischer. pp. 5883.Google Scholar
Hoson, T. and Masuda, Y. 1991. The role of polysaccharide synthesis in elongation, growth, and cell wall loosening in intact rice coleoptiles. Plant Cell Physiol. 32: 763769.Google Scholar
Howell, C. R. and Stipanovic, R. D. 1984. Phytotoxicity to crop plants and herbicidal effects on weeds of viridiol produced by Gliocladium virens . Phytopathology 74: 13461349.Google Scholar
Hradil, C. M., Hallock, Y. F., Clardy, J., Kenfield, D. S., and Strobel, G. 1989. Phytotoxins from Alternaria cassiae . Phytochemistry 28: 7375.Google Scholar
Jackson, M. A., Schisler, D. A., Slininger, P. J., Boyette, C. D., Silman, R. W., and Bothast, R. J. 1996a. Fermentation strategies for improving the fitness of a bioherbicide. Weed Technol. 10: 645650.Google Scholar
Jackson, M. A., Shasha, B. S., and Schisler, D. A. 1996b. Formulation of Colletotrichum truncatum microsclerotia for improved biocontrol of the weed hemp sesbania (Sesbania exaltata). Biol. Control 7: 107113.Google Scholar
Jacobs, J. M., Jacobs, N. J., Sherman, T. D., and Duke, S. O. 1991. Effect of diphenyl ether herbicides on oxidation of protoporphyrinogen to protoporphyrin in organellar and plasma membrane-enriched fractions of barley. Plant Physiol. 97: 197203.Google Scholar
Jacyno, J. M., Cutler, H. G., Roberts, R. G., and Waters, R. M. 1991. Effects on plant growth of the HMG-CoA synthase inhibitor, 1233A/F244/L-659,699, isolated from Scopulariopsis candidus . Agric. Biol. Chem. 55: 31293131.Google Scholar
Johnson, D. R., Wyse, D. L., and Jones, K. J. 1996. Controlling weeds with phytopathogenic bacteria. Weed Technol. 10: 621624.Google Scholar
Jones, R. W. and Hancock, J. G. 1990. Soilborne fungi for biological control of weeds. In Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides. Am. Chem. Soc. Symp. Ser. No. 439. Washington, DC: ACS Books. pp. 276286.Google Scholar
Jones, R. W., Lanini, W. T., and Hancock, J. G. 1988. Plant growth response to the phytotoxin viridiol produced by the fungus Gliocladium virens . Weed Sci. 36: 683687.Google Scholar
Josekutty, P. C. 1998. Inhibition of plant growth by mevinolin and reversal of this inhibition by isoprenoids. S. Afr. J. Bot. 64: 1824.Google Scholar
Kamata, S., Sakai, H., and Hirota, A. 1983. Isolation of acetylaranotin, bisdithiode(methylthio)-acetyl-aranotin and terrein as plant growth inhibitors from a strain of Aspergillus terreus . Agric. Biol. Chem. 47: 26372638.Google Scholar
Keen, N. T., Holliday, M. J., and Yashikawa, Y. 1982. Effects of glyphosate on glyceollin production and the expression of resistance to Phytophthora megasperma f. sp. glycinea in soybean. Phytopathology 72: 14671470.Google Scholar
Kenfield, D., Bunkers, G., Strobel, G. A., and Sugawara, F. 1988. Potential new herbicides—phytotoxins from plant pathogens. Weed Technol. 2: 519524.Google Scholar
Kennedy, A. C., Elliott, L. F., Young, F. L., and Douglas, C. L. 1991. Rhizobacteria suppressive to the weed downy brome. Soil Sci. Soc. Am. J. 55: 722727.Google Scholar
Kistler, H. C. 1991. Genetic manipulation of plant pathogenic fungi. In TeBeest, D. O., ed. Microbial Control of Weeds. New York: Chapman and Hall. pp. 152170.Google Scholar
Klisiewicz, J. M. 1985. Growth and reproduction of Dichotomophthora portulacae and its biological activity on purslane. Plant Dis. 69: 761762.Google Scholar
Kloepper, J. W. and Schroth, M. N. 1978. Promoting rhizobacteria on radishes. Proc. IV Int. Conf. Plant Pathogenic Bacteria 2: 879882.Google Scholar
Klotz, M. G. 1988. The action of tentoxin on membrane processes in plants. Physiol. Plant. 74: 575582.Google Scholar
Knox, J. P. and Dodge, A. D. 1985. Isolation and activity of the photodynamic pigment hypercin. Plant Cell Environ. 8: 1925.Google Scholar
Kondo, Y., Shomura, T., Ogawa, Y., Tsuruoka, T., Watanabe, H., Totsukawa, K., Suzuki, T., Moriya, C., and Yoshida, J. 1973. Isolation and physiochemical and biological characterization of SF-1293 substance. Sci. Rept. Meiji Seika Kaisha 13: 3444.Google Scholar
Kremer, R. J. 1995. Integration of a seed-feeding insect and fungi for management of velvetleaf (Abutilon theophrasti) seed production. In DelFosse, E. S. and Scott, R. R., eds. Proc. VIII Int. Symp. Biol. Control Weeds, Melbourne, Australia: DSIR/CSIRO. pp. 627631.Google Scholar
Kremer, R. J. and Kennedy, A. C. 1996. Rhizobacteria as biocontrol agents of weeds. Weed Technol. 10: 601609.Google Scholar
Kumada, Y., Anzai, H., Takano, E., Murakami, T., Hara, O., Itoh, R., Imai, S., Satoh, A., and Nagoaka, K. 1988. The bialaphos resistance gene (bar) plays a role in both self-defense and bialaphos biosynthesis in Streptomyces hygroscopicus . J. Antibiot. 41: 18391845.Google Scholar
Kutachera, U. and Briggs, W. R. 1987. Rapid auxin-induced stimulation of cell wall synthesis in pea internodes. Proc. Natl. Acad. Sci. USA 84: 27472751.Google Scholar
Lacy, G. H. 1991. Perspectives for biological engineering of prokaryotes of biological control of weeds. In TeBeest, D. O., ed. Microbial Control of Weeds. New York: Chapman and Hall. pp. 135151.Google Scholar
Lax, A. R. and Shepard, H. S. 1988. Tentoxin: a cyclic tetrapeptide having potential herbicidal usage. Am. Chem. Soc. Symp. Ser. No. 380. Washington, DC: ACS Books. pp. 2434.Google Scholar
Lax, A. R., Vaughn, K. C., and Templeton, G. E. 1984. Nuclear inheritance of polyphenol oxidase in Nicotiana . J. Hered. 75: 285287.Google Scholar
Leathers, T. D., Gupta, S. C., and Alexander, N. J. 1993. Mycopesticides: status, challenges and potential. J. Indust. Microbiol. 12: 6975.Google Scholar
Leonard, K. J. 1982. The benefits and potential hazards of genetic heterogeneity in plant pathogens. In Charudattan, R. and Walker, H. L., eds. Biological Control of Weeds with Plant Pathogens. New York: J. Wiley. pp. 99112.Google Scholar
Lévesque, C. A. and Rahe, J. E. 1992. Herbicide interactions with fungal root pathogens, with special reference to glyphosate. Annu. Rev. Phytopathol. 30: 579602.Google Scholar
Liu, C. A., Zhong, H., Varga, J., Penner, D., and Sticklen, M. 1998. Prevention of fungal diseases in transgenic, bialaphos- and glufosinate-resistant creeping bentgrass (Agrostis palistris). Weed Sci. 46: 139146.Google Scholar
Lydon, J. 1995. The molecular genetics of bacterial phytotoxins. Proc. 22nd Annu. Plant Growth Regul. Soc. Am. 98101.Google Scholar
Madariaga, R. B. and Scharen, A. L. 1985. Septoria tritici blotch in Chilean wild oat. Plant Dis. 69: 126127.Google Scholar
Makowski, R.M.D. 1993. Effect of inoculum concentration, temperature, dew period, and plant growth stage on disease of round-leaved mallow and velvetleaf by Colletotrichum gloeosporioides f. sp. malvae . Phytopathology 83: 12291234.Google Scholar
Makowski, R.M.D. and Mortensen, K. 1990. Colletotrichum gloeosporioides f. sp. malvae as a bioherbicide for round-leaved mallow (Malva pusilla): conditions for successful control in the field. In DelFosse, E. S., ed. Proc. VII Int. Symp. Biol. Contr. Weeds. 1st Sper. Pathol. Veg. (MAF), Rome. pp. 513522.Google Scholar
Mandala, S. M., Thornton, R. A., Frommer, B., et al. 1995. The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis; producing organism, fermentation, isolation, and biological activity. Antibiotics 48: 349355.Google Scholar
Manderscheid, R. and Wild, A. 1986. Studies on the mechanism of inhibition by phosphinothricin of glutamine synthetase isolated from Triticum aestivum . J. Plant Physiol. 123: 135142.Google Scholar
Mase, S. 1984. A new herbicide. Jpn. Pestic. Inf. 45: 2730.Google Scholar
Massion, C. L. and Lindow, S. E. 1986. Effects of Sphacelotheca holci infection on morphology and competitiveness of johnsongrass (Sorghum halepense). Weed Sci. 34: 883888.Google Scholar
McRae, C. F. and Auld, B. A. 1988. The influence of environmental factors on anthracnose of Xanthium spinosum . Phytopathology 78: 11821186.Google Scholar
Meiji Seika Kaisha. 1979. J 5 4092 628 (priority 29.12.1977).Google Scholar
Mitchell, R. E. 1981. Structure: bacterial. In Durbin, R. D., ed. Toxins in Plant Disease. New York: Academic Press. pp. 259293.Google Scholar
Mitchell, R. E. 1984. The relevance of non-host-specific toxins in the expression of virulence by pathogens. Annu. Rev. Phytopathol. 22: 215245.Google Scholar
Miyairi, N., Sakai, H.-I., Konomi, T., and Imanaka, H. 1976. Enterocin, a new antibiotic—taxonomy, isolation and characterization. Antibiotics 22: 227235.Google Scholar
Molisch, H. 1937. Der einflus einer pflanze auf die andere-allelopathie. Jena, Germany: Gustave Fischer Verlag. 130 p.Google Scholar
Mollenhauer, H. H., Morré, D. J., and Norman, J. O. 1982. Ultrastructural observations of maize root tip following exposure to monensin. Protoplasma 12: 117126.Google Scholar
Mollenhauer, H. H., Morré, D. J., and Proleskey, R. E. 1986. Monensin inhibition of growth of ryegrass seedlings. Bot. Gaz. 147: 432436.Google Scholar
Morré, D. J., Boss, W. F., Grimes, H., and Mollenhauer, H. H. 1983. Kinetics of Golgi apparatus membrane flux following monensin treatment of embryogenic carrot cells. Eur. J. Cell Biol. 30: 2532.Google Scholar
Morris, M. J. 1991. The use of plant pathogens for biological weed control in South Africa. Agric. Ecosyst. Environ. 37: 239255.Google Scholar
Morris, M. J. 1996. Impact of a gall-forming rust fungus, Uromycladium tepperioanum, on populations of an invasive tree, Acacia saligna, in South Africa. In Moran, V. V. and Hoffman, J. H., eds. Proc. IX Int. Symp. Biol. Control Weeds. Capetown, South Africa, Univ. Capetown. 509 p.Google Scholar
Mortensen, K. 1988. The potential of an endemic fungus, Colletotrichum gloeosporioides, for biological control of roundleaf mallow (Malva pusilla) and velvetleaf (Abutilon theophrasti). Weed Sci. 36: 472478.Google Scholar
Mortensen, K. 1996. Constraints in development and commercialization of a plant pathogen, Colletotrichum gloeosporioides f. sp. malvae, for biological weed control. In Brown, H., Cussans, G., Devine, M., Duke, S., Fernandez-Quintanilla, C., Helweg, A., Labrada, R., Landes, M., Kudsk, P., and Streibig, J., eds. Proc. 2nd Int. Weed Control Congress. Flakkebjerg, Denmark: Dept. Weed Control, Pesticides, Ecology. pp. 1,2971,300.Google Scholar
Mortensen, K., Harris, P., and Kimm, W. K. 1991. Host ranges of Puccinia jaceae, P. centaureae, P. acroptili, and P. carthami, and the potential value of P. jaceae as a biological control agent for diffuse knapweed (Centaurea diffusa) in North America. Can. J. Plant Pathol. 11: 322324.Google Scholar
Munyaradzi, S. T., Campbell, M., and Burge, M. N. 1990. The potential for bracken control with mycoherbicidal formulations. Aspects Appl. Biol. 24: 169177.Google Scholar
Murakami, T., Anzai, H., Imai, S., Satoh, A., Nagaska, K., and Thompson, C. 1986. The bialaphos biosynthetic gene of Streptomyces: molecular cloning and characterization of the gene cluster. J. Mol. Gen. Genet. 205: 4250.Google Scholar
Murao, S. and Hayashi, H. 1983. Gougerotin, as a plant growth inhibitor from Streptomyces sp. No. 179. Agric. Biol. Chem. 47: 11351136.Google Scholar
Nakajima, M., Itoi, K., Takamatsu, Y., et al. 1989. Cornexistin: a new fungal metabolite with herbicidal activity. J. Antibiot. 44: 10651072.Google Scholar
Nasini, G., Locci, L., Camarda, L., Merlini, L., and Nasini, G. 1977. Screening of the genus Cercospora for secondary metabolites. Phytochemistry 16: 243247.Google Scholar
Niida, T., Inouye, S., Tsuruoka, T., et al. 1973. Antibiotic SF-1293 from Streptomyces hygroscopicus . German Offen. DE 2236599. Meiji Seika Kaisha.Google Scholar
Nukina, M. 1987. Pyrichalasin H, a new phytotoxic metabolite belonging to the cytochalains from Pyricularia grisea (Cooke) Saccardo. Agric. Biol. Chem. 51: 26252628.Google Scholar
Nukina, M. and Namai, T. 1991. Productivity of pyrichalasin H, a phytotoxic metabolite, from different isolates of Pyricularia grisea and from other isolates of Puricularia spp. Agric. Biol. Chem. 55: 1,8991,900.Google Scholar
Politis, D. J., Watson, A. K., and Bruckart, W. L. 1984. Susceptibility of musk thistle and related composites to Puccinia carduorum . Phytopathology 74: 687691.Google Scholar
Rasche, E. and Gadsby, M. 1997. Glufosinate ammonium tolerant crops—international commercial developments and experiences. Br. Crop Prot. Conf. Weeds 9B-2. 3: 941946.Google Scholar
Ridley, S. M. and McNally, S. F. 1985. Effects of phosphinothricin on the isoenzymes of glutamine synthetase isolated from plant species which exhibit varying degrees of susceptibility to the herbicide. Plant Sci. 39: 3136.Google Scholar
Robeson, D. J. and Strobel, G. A. 1985. The identification of a major phytotoxic component from Alternaria macrospora as β-dehydrocurvularin. J. Nat. Prod. 48: 139141.Google Scholar
Ruff, M. D., Reid, W. M., and Rahn, A. P. 1976. Efficacy of different feeding levels of monensin in the control of coccidiosis in broilers. Am. J. Vet. Res. 37: 963967.Google Scholar
Rupp, W., Finke, M., Bieringer, H., and Langelueddeke, P. 1977. Herbicidal composition. German Offen. DE 2717440. Hoechst AG.Google Scholar
Sakamura, S., Ichihara, A., and Yoshihara, T. 1988. Toxins of phytopathogenic microorganisms: structural diversity and physiological activity. In Cutler, H. G., ed. Biologically Active Natural Products. Am. Chem. Symp. Ser. No. 380, Washington, DC: ACS Books. pp. 5764.CrossRefGoogle Scholar
Sankula, S., Braverman, M. P., Jodari, F., Linscombe, S. D., and Oard, J. H. 1997. Evaluation of glufosinate on rice (Oryza sativa) transformed with the bar gene and red rice (Oryza sativa). Weed Technol. 11: 7075.Google Scholar
Scheepens, P. C. 1987. Joint action of Cochliobolus lunatus and atrazine on Echinochloa crus-galli (L.) Beauv. Weed Res. 27: 4347.Google Scholar
Scheepens, P. C. and van Zon, H.C.J. 1982. Microbial herbicides. In Kurstak, E., ed. Microbial and Viral Pesticides. New York: Marcel Dekker. pp. 623641.Google Scholar
Scheffer, R. P. and Livingston, R. S. 1984. Host-selective toxins and their role in plant diseases. Science 112: 1721.Google Scholar
Seto, H., Sato, T., Urano, S., Uzawa, J., and Yonehara, H. 1976. Utilization of C-13-C-13 coupling in structural and biosynthetic studies. 7. Structure and biosynthesis of vulgamycin. Tetrahedron Lett. 48: 43674370.CrossRefGoogle Scholar
Shabana, Y.M.N.E. 1987. Biological Control of Water Weeds by Using Plant Pathogens. Ph.D. dissertation. Mansoura University, El-Mansoura, Egypt. 78 p.Google Scholar
Sharon, A., Ghirlando, R., and Gressel, J. 1992. Isolation, purification, and identification of 2-(p-hydroxyphenoxy)-5,6-dihydroxychromone: a fungal induced phytoalexin. Plant Physiol. 98: 303308.Google Scholar
Shier, W. T. and Abbas, H. K. 1999. Current issues in research on fumonisins, mycotoxins which may cause nephropathy. J. Toxicol.—Toxin Rev. 18: 323335.Google Scholar
Shier, W. T., Abbas, H. K., and Mirocha, C. J. 1991. Toxicity of the mycotoxins fumonisins B1 and B2 and Alternaria alternata f. sp. lycopersici toxin (AAL) in cultured mammalian cells. Mycopathologia 116: 97104.Google Scholar
Skipper, H. D., Ogg, A. G., and Kennedy, A. C. 1996. Root biology of grasses and ecology of rhizobacteria for biological control. Weed Technol. 10: 610620.Google Scholar
Smith, A. E. 1988. Persistence and tranformation of the herbicide [14C]glufosinate-ammonium in prairie soils under laboratory conditions. J. Agric. Food Chem. 36: 393397.CrossRefGoogle Scholar
Smith, R. J. Jr. 1982. Integration of microbial herbicides with existing pest management programs. In Charudattan, R. and Walker, H. L., eds. Biological Control of Weeds with Plant Pathogens. New York: J. Wiley. pp. 189203.Google Scholar
Smith, R. J. Jr. 1986. Biological control of northern jointvetch (Aeschynomene virginica) in rice (Oryza sativa) and soybeans (Glycine max)—a researcher's view. Weed Sci. 34 (Suppl. 1): 1723.Google Scholar
Smith, J. R. Jr. 1991. Integration of biological control agents with chemical pesticides. In TeBeest, D. O., ed. Microbial Control of Weeds. New York: Chapman and Hall. pp. 189208.Google Scholar
Steele, J. A., Uchytil, T. F., Durbin, R. D., Bhatnagar, P., and Rich, D. H. 1978. Chloroplast coupling factor 1: a species-specific receptor for tentoxin. Proc. Natl. Acad. Sci. USA 73: 22452248.Google Scholar
Stierle, A., Cardellina, J. H., and Strobel, G. A. 1988. Maculosin, a host-specific phytotoxin for spotted knapweed from Alternaria alternata . Proc. Natl. Acad. Sci. USA 85: 8,0088,013.Google Scholar
Stipanovic, R. D. and Howell, C. R. 1994. Inhibition of phytotoxin (viridiol) biosynthesis in the biocontrol agent Gliocladium virens . In Hedin, P., ed. Bioregulators for crop protection and pest Control. Am. Chem. Soc. Symp. Ser. No. 557. Washington, DC: ACS Books. pp. 136143.Google Scholar
Stonard, R. J. and Miller-Wideman, M. A. 1995. Herbicides and plant growth regulators. In Godfrey, C.R.A., ed. Agrochemicals from Natural Products. New York: Marcel Dekker. pp. 285310.Google Scholar
Strobel, G., Stierle, A., Park, S. H., and Cardellina, J. 1990. Maculosin: a host-specific phytotoxin from Alternaria alternata on spotted knapweed. In Hoagland, R. E., ed. Microbes and Microbial Products as Herbicides. Am. Chem. Soc. Symp. Ser. No. 439. Washington, DC: ACS Books. pp. 5362.Google Scholar
Strobel, G. A., Sugawara, F., and Clardy, J. 1987. Phytotoxins from plant pathogens of weedy plants. In Waller, G. R., ed. Allelochemicals: Role in Agriculture and Forestry. Am. Chem. Soc. Symp. Ser. No. 330. Washington, DC: ACS Books. pp. 516523.CrossRefGoogle Scholar
Sticher, L. and Jones, R. L. 1988. Monensin inhibits the secretion of α-amylase but not polysaccharide slime from seedling tissue of Zea mays . Protoplasma 142: 3645.Google Scholar
Suemitsu, R., Ohnishi, K., Horiuchi, M., Kitaguchi, A., and Odamura, K. 1992. Porritoxin, a phytotoxin of Alternaria porri . Phytochemistry 31: 2,3252,326.Google Scholar
Sugawara, F. and Strobel, G. A. 1986. (-)-Dihydropyrenophorin, a novel and selective phytotoxin produced by Drechslera avenae . Plant Sci. 43: 15.Google Scholar
Sugawara, R., Strobel, G., Fisher, L. E., Van Duyne, G. D., and Clardy, J. 1985. Bipolaroxin, a selective phytotoxin produced by Bipolaris cynodontis . Proc. Natl. Acad. Sci. USA 82: 8,2918,294.Google Scholar
Suslow, T. V. and Schroth, M. N. 1982. Role of delecterious rhizobacteria as minor pathogens in reducing crop growth. Phytopathology 72: 111115.Google Scholar
Sutko, J. L., Besch, J. R., Bailey, J. C., Zimmerman, C., and Watanabe, A. M. 1977. Direct effects of the monovalent cation ionophores monensin and nigericin on myocardium. J. Pharmacol. Exp. Ther. 203: 685700.Google Scholar
Tabuchi, H., Tajimi, A., and Ichihara, A. 1991. (+)-Isocerosporin, a phytotoxic compound isolated from Scolecotrichum graminis Fuckel. Agric. Biol. Chem. 55: 2,6752,676.Google Scholar
Tachibana, K. 1987. Herbicidal characteristics of bialaphos. Pestic. Sci. Biotechnol. Proc. 6th Int. Congress Pestic. Chem. pp. 145148.Google Scholar
Tada, T., Kanzaki, H., Norita, E., Uchimiya, H., and Nakamura, I. 1996. Decreased symptoms of rice blast disease on leaves of bar-expressing transgenic rice plants following treatment with bialaphos. Mol. Plant Microbe Interact. 9: 762764.Google Scholar
Tal, B., Robeson, D. J., Burke, D. A., and Aasen, A. J. 1985. Phytotoxins from Alternaria helianthi: radicinin, and the strucutrues of deoxyradicinol and radianthin. Phytochemistry 24: 729731.Google Scholar
Takematsu, T., Konnai, M., Tachibana, K., Tsuruoka, T., Inouye, S., and Watanabe, T. 1979. Antibiotic SF-1293 as a herbicide. Jpn. Kokai Tokky Koho JP 79 067026. German Offen. DE 2848224. Meiji Seika Kaisha.Google Scholar
Tanaka, T., Abbas, H. K., and Duke, S. O. 1993. Phytotoxin structure-activity relationships of fumonisins, aminopentals, sphingolipids and AAL-toxin in a duckweed (Lemma pausiocostata L.) bioassay. Phytochemistry 33: 779785.Google Scholar
Tanaka, Y. and Omura, S. 1993. Agroactive compounds of microbial origin. Annu. Rev. Microbiol. 47: 5787.CrossRefGoogle ScholarPubMed
Tartakoff, A. M. 1983. Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell 32: 1,0261,028.Google Scholar
TeBeest, D. O. 1991. Microbial Control of Weeds. TeBeest, D. O., ed. New York: Chapman and Hall. 284 p.CrossRefGoogle Scholar
TeBeest, D. O., Yang, Z. B., and Cisar, C. R. 1992. The status of biological control of weeds with fungal pathogens. Annu. Rev. Phytopathol. 30: 637657.Google Scholar
Thompson, C. J., Movva, N. R., Tigard, R., Crameri, R., Davies, J. E., Lauwereys, S. M., and Botterman, J. 1987. Characterization of the herbicide-resistance gene BAR from Streptomyces hygroscopicus . Eur. Mol. Biol. Org. J. 6: 2,5192,523.Google Scholar
Thuleau, P., Graziana, A., Rossignol, M., Kauss, H., Auriol, P., and Ranjeva, R. 1988. Binding of the phytotoxin zinniol stimulates the entry of calcium into plant protoplasts. Proc. Natl. Acad. Sci. USA 85: 5,9325,935.Google Scholar
Tietjen, J. G., Schaller, E., and Matern, U. 1983. Phytotoxins from Alternaria carthami Chowdhury: structural identification and physiological significance. Physiol. Plant Pathol. 23: 387400.Google Scholar
Tisdell, C. 1987. Economic evaluation of biological weed control. Plant Prot. Q. 2: 1011.Google Scholar
Tokuma, Y., Miyairi, N., and Morimoto, Y. 1976. Structure of enterocin-xray analysis of m-bromo-benzyoyl enterocin-dihydrate. Antibiotics 29: 11141116.Google Scholar
Trujillo, E. E. 1985. Biological control of hamakua pa-makani with Cercosporella sp. in Hawaii. In DelFosse, E. S., ed. Proc. VI Int. Symp. Biol. Control Weeds. Ottawa: Agriculture Canada. pp. 661671.Google Scholar
Uchimiya, H., Iwata, M., Nojiri, C., et al. 1993. Bialaphos treatment of transgenic rice plants expressing a bar gene prevents infection by the sheath blight pathogen (Rhizoctonia solani). Bio/Technology 11: 835836.Google Scholar
U.S. Patent 3,162,525 (1964). Method for the control of plant growth. 3 p.Google Scholar
Van Asch, M.A.J., Rijkenberg, F.H.J., and Coutinho, T. A. 1992. Phytotoxicity of fumonisin B1, moniliformin, and T-2 toxin to corn callus cultures. Phytopathology 82: 1,3301,332.Google Scholar
Vasil, I. K. 1996. Phosphinothricin-resistant crops. In Duke, S. O., ed. Herbicide-Resistant Crops. Boca Raton, FL: CRC Press. pp. 8591.Google Scholar
Vaughn, K. C. and Duke, S. O. 1984. Tentoxin stops the processing of polyphenol oxidase into an active enzyme. Physiol. Plant. 60: 257261.Google Scholar
Venkatasubbaiah, P., Baudoin, A.B.A.M., and Chilton, W. S. 1992. Leaf spot of hemp dogbane caused by Stagonopora apocyni, and its phytotoxins. J. Phytopathol. 135: 309316.Google Scholar
Venkatasubbaiah, P. and Chilton, W. S. 1992. Phytotoxin of Ascochyta hyalosopora, causal agent of lambsquarters leaf spot. J. Nat. Prod. 55: 461467.Google Scholar
Vesonder, R. F., Labeda, D. P., and Peterson, R. E. 1992a. Phytotoxic activity of selected water-soluble metabolites of Fusarium against Lemna minor L. (duckweed). Mycopathologia 118: 185189.Google Scholar
Vesonder, R. F., Peterson, R. E., Lebeda, D., and Abbas, H. K. 1992b. Comparative phytotoxicity of fumonisins, AAL-toxin and yeast sphingolipids in Lemma minor L. (duckweed). Arch. Environ. Contam. Toxicol. 23: 464467.Google Scholar
Vey, A., Hoagland, R. E., and Butt, T. M. 2001. Toxic metabolites of fungal biocontrol agents. In Butt, T. M., Jackson, C., and Magan, N., eds. Fungi as Biocontrol Agents. Wallingford, CT: UN CABI Publishing. pp. 311345.Google Scholar
Vogelgsang, S., Watson, A. K., Ditommaso, A., and Hurle, K. 1998. Effect of the pre-emergence bioherbicide Phomopsis convolvulus on seedling and established plant growth of Convolvulus arvensis . Weed Res. 38: 175182.Google Scholar
Vogeli, U. and Chappell, J. 1991. Inhibition of a plant sesquiterpene cyclase by mevinolin. Arch. Biochem. Biophys. 288: 157162.CrossRefGoogle ScholarPubMed
Walker, H. L. 1981. Fusarium lateritium: a pathogen of spurred anoda (Anoda cristata), prickly sida (Sida spinosa), and velvetleaf (Abutilon theophrasti). Weed Sci. 29: 629631.Google Scholar
Walker, H. L. 1982. A seedling blight of sicklepod caused by Alternaria cassiae . Plant Dis. 66: 426428.Google Scholar
Walker, H. L. 1983. Control of sicklepod, showy crotalaria, and coffee senna with a fungal pathogen. U.S. patent 4,390,360.Google Scholar
Walker, H. L. and Boyette, C. D. 1986. Influence of sequential dew periods on biocontrol of sicklepod (Cassia obtusifolia) by Alternaria cassiae . Plant Dis. 70: 962963.Google Scholar
Walker, H. L. and Tilley, A. M. 1997. Evaluation of an isolate of Myrothecium verrucaria from sicklepod (Senna obtusifolia) as a potential mycoherbicide agent. Biol. Control 10: 104112.Google Scholar
Wang, E., Norred, W. P., Bacon, C. W., Riley, R. T., and Merrill, A. H. 1991. Inhibition of sphingolipid biosynthesis by fumonisins. J. Biol. Chem. 266: 14,48614,490.Google Scholar
Wapshere, A. J. 1974. A strategy for evaluating the safety of organisms for biological weed control. Ann. Appl. Biol. 77: 201211.Google Scholar
Watson, A. K., Schreoder, D., and Alkhoury, I. 1981. Collection of Puccinia species from diffuse knapweed in eastern Europe. Can. J. Plant Pathol. 3: 68.Google Scholar
Whitney, N. G. and Taber, R. A. 1986. First report of Amphobotrys ricini infecting Caperonia palustris in the United States. Plant Dis. 70:892.Google Scholar
Wild, A. and Wendler, C. 1993. Inhibitory action of glufosinate on photosynthesis. Z. Naturforsch. Teil C 48: 369373.Google Scholar
Wild, A. and Ziegler, C. 1989. The effect of bialaphos on ammonium-assimilation and photosynthesis. Z. Naturforsch. Teil C 44: 97102.Google Scholar
Winder, R. S. and van Dyke, G. C. 1989. The pathogenicity, virulence, and biocontrol potential of two Bipolaris species on johnsongrass (Sorghum halepense). Weed Sci. 38: 8994.Google Scholar
Wohlleben, W., Arnold, W., Broer, I., Hillemann, D., Strauch, E., and Pühler, A. 1988. Nucleotide sequence of phosphinothricin-N-acetyl-transferase gene from Streptomyces viridochromogenes Tue H 94 and its expression in Nicotiana tabacum . Gene 70: 2537.Google Scholar
Womack, J. G., Eccleston, G. C., and Burge, M. N. 1996. A vegetable oil-based invert emulsion for mycoherbicide delivery. Biol. Control 6: 2328.Google Scholar
WSSA. 1994. Herbicide Handbook. 7th ed. Champaign, IL: Weed Science Society of America. pp. 147149.Google Scholar
Yamamato, R. and Masuda, Y. 1984. Matrix polysaccharides of oat coleoptile cell walls. Phytochemistry 17: 923931.Google Scholar
Yang, Y.-S., Johnson, D. R., and Dowler, W. M. 1990. Pathogenicity of Alternaria angustiovoidea on leafy spurge. Plant Dis. 74: 601604.Google Scholar
Zeiss, H.-J. 1994. Recent advances in the stereoselective synthesis of L-phosphinothricin. Pestic. Sci. 41: 269277.Google Scholar
Zhang, W. and Watson, A. K. 1997. Host range of Exserohilum monoceras, a potential bioherbicide for the control of Echinochloa species. Can. J. Bot. 75: 685692.Google Scholar
Zidack, N. K., Backman, P. A., and Shaw, J. J. 1992. Promotion of bacterial infection of leaves by an organosilicone surfactant: implications for biological weed control. Biol. Control 2: 111117.Google Scholar
Zorner, P. S., Evans, S. L., and Savage, S. D. 1993. Perspectives on providing a realistic technical foundation for the commercialization of bioherbicides. In Duke, S. O., Menn, J. J., and Plimmer, J. R., eds. Pest Control with Enhanced Environmental Safety. Am. Chem. Soc. Symp. Ser. No. 524. Washington, DC: ACS Books. pp. 7986.Google Scholar