Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T18:14:48.448Z Has data issue: false hasContentIssue false

Microbiological Aspects of Environmental Fate Studies of Pesticides

Published online by Cambridge University Press:  12 June 2017

Horace D. Skipper
Affiliation:
Dep. Agron., Clemson Univ., Clemson, SC 29634-0359
Arthur G. Wollum II
Affiliation:
Dep. Soil Sci., North Carolina State Univ., Raleigh, NC 27695
Ronald F. Turco
Affiliation:
Dep. Agron., Purdue Univ., West Lafayette, IN 47907
Duane C. Wolf
Affiliation:
Dep. Agron., Univ. Arkansas, Fayetteville, AR 72701

Abstract

Surface and subsurface soils are complex biological, chemical, and physical environments and to understand the fate of pesticides in the soil environment is a formidable task. To determine the environmental fate of pesticides requires a diverse array of techniques and procedures. Microbiological approaches range from applied to basic, laboratory to field, qualitative to quantitative, and from low to high technology. In the arena of biodegradation, teams of scientists are needed to develop predictive models for the behavior of pesticides in the soil environment. From our perspectives, we have documented the existing status of the microbiology of environmental fate studies with pesticides. Verification of data from laboratory studies to the field environment is needed. On the other hand, efforts to design better field studies to assess microbial processes are essential to advance our understanding of environmental fate studies with pesticides.

Type
Symposium
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Adebayo, A. A. and Harris, R. F. 1971. Fungal growth responses to osmotic as compared to matric water potential. Soil Sci. Soc. Am. J. 35:465469.CrossRefGoogle Scholar
2. Alexander, M. 1994. Biodegradation and Bioremediation. Academic Press, New York, NY. 302 p.Google Scholar
3. Allison, L. E. 1951. Vapor-phase sterilization of soil with ethylene oxide. Soil Sci. 72:341352.CrossRefGoogle Scholar
4. Anderson, J. P. 1982. Soil respiration. p. 831871 in Page, A. L. et al., eds. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, 2nd ed. Agron. Monogr. 9. Am. Soc. Agron. and Soil Sci. Soc. Am., Madison, WI.Google Scholar
5. Anderson, J. P. and Domsch, K. H. 1975. Measurement of bacterial and fungal contributions to respiration of selected agricultural and forest soils. Can. J. Microbiol. 21:314322.CrossRefGoogle ScholarPubMed
6. Anderson, J. P. and Domsch, K. H. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10:215221.CrossRefGoogle Scholar
7. Anderson, J. P., Armstrong, R. A., and Smith, S. N., 1981. Methods to evaluate pesticide damage to the biomass of the soil microflora. Soil Biol. Biochem. 13:149153.CrossRefGoogle Scholar
8. Balkwill, D. L., Frederickson, J. K., and Thomas, J. M. 1989. Vertical and horizontal variations in the physiological diversity of the aerobic chemoheterotrophic bacterial microflora in deep southeast coastal plain subsurface sediments. Appl. Environ. Microbiol. 55:10581065.CrossRefGoogle ScholarPubMed
9. Bartha, R. and Pramer, D. 1965. Features of a flask and method for measuring the persistence and biological effects of pesticides in soil. Soil Sci. 100:6870.CrossRefGoogle Scholar
10. Bartlett, R. J. and Zelazny, L. W. 1967. A simple technique for preparing and maintaining sterile soils for plant studies. Soil Sci. Soc. Am. Proc. 31:436437.CrossRefGoogle Scholar
11. Behki, R. M. and Khan, S. U. 1986. Degradation of atrazine by Pseudomonas: N-dealkylation and dehalogenation of atrazine and its metabolites. J. Agric. Food Chem. 34:746749.CrossRefGoogle Scholar
12. Beloian, A. 1983. Methods of testing for sterility: Efficacy of sterilizers, sporicides, and sterilizing processes. p. 885917 in Block, S. S., ed. Disinfection, Sterilization, and Preservation, 3rd ed. Lea and Febiger, Philadelphia, PA.Google Scholar
13. Beloin, R. M., Sinclair, J. C., and Ghiorse, W. C. 1988. Distribution and activity of microorganisms in subsurface sediments of a pristine study site in Oklahoma. Microb. Ecol. 16:8597.CrossRefGoogle ScholarPubMed
14. Birch, H. F. 1958. The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 10:931.CrossRefGoogle Scholar
15. Bochner, B. R. and Savageau, M. A. 1977. Generalized indicator plate for genetic, metabolic, and taxonomic studies with microorganisms. Appl. Environ. Microbiol. 33:434444.CrossRefGoogle ScholarPubMed
16. Bollag, J.-M. 1992. Decontaminating soil with enzymes. Environ. Sci. Technol. 26:18761881.CrossRefGoogle Scholar
17. Bottomley, P. J., Maggard, S. P., Leung, K., and Busse, M. D. 1991. Importance of saprophytic competence for introduced rhizobia. p. 135140 in Keister, D. L. and Cregan, P. B., eds. The Rhizosphere and Plant Growth. Kluwer Academic Publishers, Boston, MA.CrossRefGoogle Scholar
18. Bouchard, D. C., Lavy, T. L., and Marx, D. B. 1982. Fate of metribuzin, metolacholor and flumeturon in soil. Weed Sci. 30:629632.CrossRefGoogle Scholar
19. Bowman, R. S. and Rice, R. C. 1986. Accelerated herbicide leaching resulting from preferential flow phenomena and its implications for groundwater contamination. In Proc. Conf. on Southwestern Groundwater Issues, Phoenix, AZ. 20–22 Oct. Natl. Water-Well Assoc., Dublin, OH.Google Scholar
20. Boyd, S. A. and King, R. 1984. Adsorption of labile organic compounds by soil. Soil Sci. 137:115119.CrossRefGoogle Scholar
21. Brockman, F. J., Kieft, T. L., Fredrickson, J. K., Bjornstad, B. N., Li, S. M., Spangenburg, W., and Long, P. E. 1992. Microbiology of vadose zone paleosols in south-central Washington Stale. Microb. Ecol. 23:279301.CrossRefGoogle Scholar
22. Butters, G. L., Jury, W. A., and Ernst, F. F. 1989. Field scale transport of bromide in an unsaturated soil. I. Experimental methodology and results. Water Resour. Res. 25:15751582.CrossRefGoogle Scholar
23. Calabrese, V. G., Holben, W. E., and Sexstone, A. J. 1991. Assessment of diversity of 2,4-D-catabolic plasmids in bacteria isolated from different soils. p. 260 in Agronomy Abstracts. ASA, Madison, WI.Google Scholar
24. Caputo, R. A. and Odlaug, T. E. 1983. Sterilization with ethylene oxide and other gases. p. 4764 in Block, S. S., ed, Disinfection, Sterilization, and Preservation, 3rd ed. Lea and Febiger, Philadelphia, PA.Google Scholar
25. Carter, G. E. Jr. and Camper, N. D. 1975. Soil enrichment studies with trifluralin. Weed Sci. 23:7174.CrossRefGoogle Scholar
26. Cawse, P. A. 1975. Microbiology and biochemistry of irradiated soils. p. 213267 in Paul, E. A. and McLaren, A. D., eds. Soil Biochemistry, Vol. 3. Marcel Dekker, New York.Google Scholar
27. Cole, M. A. 1976. Effect of long-term atrazine application on soil microbial activity. Weed Sci. 24:473476.CrossRefGoogle Scholar
28. Colwell, R. R. 1985. Viable but non-culturable Vibrio cholerae and related pathogens in the environment: Implications for release of genetically engineered microorganisms. Bio/Technology 3:817820.Google Scholar
29. Dao, T. H., Marx, D. B., Lavy, T. L., and Dragun, J. 1982. Effect and statistical evaluation of soil sterilization on aniline and diuron adsorption isotherms. Soil Sci. Soc. Am. J. 46:963969.CrossRefGoogle Scholar
30. Davis, R. D. 1975. Bacteriostasis in soils sterilized by gamma irradiation and in reinoculated sterilized soils. Can. J. Microbiol. 21:481484.CrossRefGoogle ScholarPubMed
31. Dobbins, D. C., Aelion, C. M., and Pfaender, F. 1992. Subsurface, terrestrial microbial ecology and biodegradation of organic chemicals: A review. Crit. Rev. Environ. Control 22:67136.CrossRefGoogle Scholar
32. Don, R. H. and Pemberton, J. M. 1981. Properties of six degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus . J. Bacteriol. 145:681686.CrossRefGoogle ScholarPubMed
33. Eno, C. F. and Popenoe, H. 1964. Gamma radiation compared with steam and methyl bromide as a soil sterilizing agent. Soil Sci. Soc. Am. Proc. 28:533535.CrossRefGoogle Scholar
34. Ferriss, R. S. 1984. Effects of microwave oven treatment on microorganisms in soil. Phytopathology 74:121126.CrossRefGoogle Scholar
35. Fletcher, C. L. and Kaufman, D. D. 1980. Effect of sterilization methods on 3-chloroaniline behavior in soil. J. Agric. Food Chem. 28:667671.CrossRefGoogle Scholar
36. Frederickson, J. K., Bezdicek, D. F. Brockman, F.E., and Li, S. W. 1988. Enumeration of Tn5 mutant bacteria in soil by most-probable-number DNA hybridization procedure and antibiotic resistance. Appl. Environ. Microbiol. 54:446453.CrossRefGoogle Scholar
37. Fredrickson, J. K., Garland, T. R., Hicks, R. J., Thomas, J. M., Li, S. W., and McFadden, K. M. 1989. Lithotrophic and heterotrophic bacteria in deep subsurface sediments and their relation to sediment properties. Geomicrobiol. J. 7:5366.CrossRefGoogle Scholar
38. Greenhalgh, R. 1978. IUPAC commission on terminal pesticide residues. J. Assoc. Official Anal. Chem. 61:841868.Google ScholarPubMed
39. Grier, N. 1983. Mercurials—inorganic and organic. p. 346374 in Block, S. S., ed. Disinfection, Sterilization, and Preservation, 3rd ed. Lea and Febiger, Philadelphia, PA.Google Scholar
40. Guth, J. A. 1981. Experimental approaches to studying the fate of pesticides in soil. p. 85114 in Hutson, D. H. and Roberts, T. R., eds. Progress in Pesticide Biochemistry. John Wiley & Sons, Chichester, England.Google Scholar
41. Hiltner, A. 1904. Uber neuere erfahrungen und probleme auf dem gebiet der bodenbakteiologie und unter besonderer berusckichtigung der grundungung und brache. Arb. Dtsch. Landwirtsch. Ges., Berlin 98:5978.Google Scholar
42. Hoffmann, G. M. and Malkomes, H. P. 1979. The fate of fumigants. p. 291335 in Mulder, D., ed. Soil Disinfestation. Elsevier Scientific Publishing Co., Amsterdam, The Netherlands.CrossRefGoogle Scholar
43. Holben, W. E., Schroeter, B. M., Calabrese, V. G., Olsen, R. H., Kukor, J. K., Biederbeck, V. O., Smith, A. E., and Tiedje, J. M. 1992. Gene probe analysis of soil microbial populations selected by amendment with 2,4-dichlorophenoxyacetic acid. Appl. Environ. Microbiol. 58:39413948.CrossRefGoogle Scholar
44. Holben, W. E., Jansson, J. K., Chelm, B. K., and Tiedje, J. M. 1988. DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl. Environ. Microbiol. 54:703711.CrossRefGoogle ScholarPubMed
45. Horvath, R. S. 1972. Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol. Rev. 36:146155.CrossRefGoogle ScholarPubMed
46. Jackson, N. E., Corey, J. C., Frederick, L. R., and Picken, J. C. Jr. 1967. Gamma irradiation and the microbial population of soils at two water contents. Soil Sci. Soc. Am. Proc. 31:491494.CrossRefGoogle Scholar
47. Jenneman, G. E., McInerney, M. J., Crocker, M. E., and Knapp, R. M. 1986. Effect of sterilization by dry heat or autoclaving on bacterial penetration through Berea sandstone. Appl. Environ, Microbiol. 51:3943.CrossRefGoogle ScholarPubMed
48. Johnson, L. F. and Curl, E. A. 1972. Methods for Research on the Ecology of Soil-Borne Plant Pathogens, Burgess Publishing Co., Minneapolis. MN. 247 p.Google Scholar
49. Joslyn, L. 1983. Sterilization by heat. p. 346 in Block, S. S., ed. Disinfection, Sterilization, and Preservation, 3rd ed. Lea and Febiger, Philadelphia. PA.Google Scholar
50. Jury, W. A., Elabd, H., and Resketo, M. 1986. Field study of napropamide movement through unsaturated soil. Water Resour. Res. 22:749755.CrossRefGoogle Scholar
51. Kaufman, D. D. 1967. Degradation of carbamate herbicides in soil. J. Agric. Food Chem. 15:582591.CrossRefGoogle Scholar
52. Kaufman, D. D. and Edwards, D. F. 1983. Pesticide/microbe interaction effects on persistence of pesticides in soil. p. 177182 in Miyamoto, J. and Kearney, P. C., eds. Pesticide Chemistry: Human Welfare and the Environment, Vol. 4. Pergamon Press, New York.CrossRefGoogle Scholar
53. Kaufman, D. D. and Blake, J. 1973. Microbial degradation of several acetamide, acylanilide, carbamate, toluidine, and urea pesticides. Soil Biol. Biochem. 5:297308.CrossRefGoogle Scholar
54. Kaufman, D. D. and Kearney, P. C. 1965. Microbial degradation of isopropyl N-3-chlorophenylcarbamate and 2-chloroethyl-N-3-chlorophenylcarbamate. Appl. Microbiol. 13:443446.CrossRefGoogle Scholar
55. Kaufman, D. D. and Kearney, P. C. 1976. Microbial transformations in the soil. p. 2964 in Audus, L. J., ed. Herbicides—Physiology, Biochemistry. Ecology, 2nd ed., Vol. 2. Academic Press, New York.Google Scholar
56. Kaufman, D. D., Plimmer, J. R. Kearney, P.C., Blake, J., and Guardia, F. S. 1968. Chemical versus microbial decomposition of amitrole in soil. Weed Sci. 16:266272.CrossRefGoogle Scholar
57. Kaufman, D. D., Kearney, P. C., and Sheets, T. J. 1963. Simazine: degradation by soil microorganisms. Science 142:405406.CrossRefGoogle ScholarPubMed
58. Kearney, P. C. and Kontson, A. 1976. A simple system to simultaneously measure volatilization and metabolism of pesticides from soils. J. Agric. Food Chem. 24:424426.CrossRefGoogle ScholarPubMed
59. Kempson-Jones, G. F. and Hance, R. J. 1979. Kinetics of linuron and metribuzin degradation in soil. Pestic. Sci. 10:449454.CrossRefGoogle Scholar
60. Kilbane, J. J., Chatterjee, D. K., Karnes, J. S., Kellogg, S. T., and Chakrabarty, A. M. 1982. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia . Appl. Environ. Microbiol. 44:7278.CrossRefGoogle ScholarPubMed
61. Kitur, B. K. and Frye, W. W. 1983. Effects of heating on soil chemical properties and growth and nutrient composition of corn and millet. Soil Sci. Soc. Am. J. 47:9194.CrossRefGoogle Scholar
62. Kladivko, E. J., Van Scoyoc, G. E. Monke, E. J., Oates, K. M., and Pask, W. 1991. Pesticide and nutrient movement into subsurface tile drains on a silt loam soil in Indiana. J. Environ. Qual. 20:264270.CrossRefGoogle Scholar
63. Konopka, A. and Turco, R. F. 1991. Biodegradation of organic compounds in vadose zone and aquifer sediments. Appl. Environ. Microbiol. 57:22602268.CrossRefGoogle ScholarPubMed
64. Korczynski, M. S. 1981. Sterilization. p. 476486 in Gerhardt, P., ed. Manual of Methods for General Bacteriology. Am. Soc. Microbiol., Washington. DC.Google Scholar
65. Koskinen, W. C. and Cheng, H. H. 1982. Elimination of aerobic degradation during characterization of pesticide adsorption-desorption in soil. Soil Sci. Soc. Am. J. 46:256259.CrossRefGoogle Scholar
66. Krasil'nokov, N. A. 1958. Soil Microorganisms and Higher Plants. Academy of Sciences, USSR.Google Scholar
67. Labeda, D. P., Balkwill, D. L., and Casida, L. E. Jr. 1975. Soil sterilization effects on in situ indigenous microbial cells in soil. Can. J. Microbiol. 21:263269.CrossRefGoogle ScholarPubMed
68. Lanlie, J. S., Meggitt, W. F., and Penner, D. 1976. Role of pH on metribuzin dissipation in field soils. Weed Sci. 24:508511.Google Scholar
69. Lawrence, E. G., Skipper, H. D., Gooden, D. T., Zublena, J. P., and Struble, J. E. 1990. Persistence of carbamothioate herbicides in soils pretreated with butylate. Weed Sci. 38:194197.CrossRefGoogle Scholar
70. Lee, A. 1984. EPTC (S-ethyl N,N-dipropylthiocarbamate) degrading microorganisms isolated from a soil previously exposed to EPTC. Soil Biol. Biochem. 16:529531.CrossRefGoogle Scholar
71. Lochhead, A. G. 1940. Qualitative studies of soil organisms. Can. J. Res. 18(C): 4253.CrossRefGoogle Scholar
72. Loos, M. A. 1975. Indicator media for microorganisms degrading chlorinated pesticides. Can. J. Microbiol. 21:104107.CrossRefGoogle ScholarPubMed
73. Lopes, A. S. and Wollum, A. G. 1976. Comparative effects of methyl bromide, propylene oxide, and autoclave sterilization on specific soil chemical characteristics. Turrialba 26:351355.Google Scholar
74. Mandelbaum, R. T., Wackett, L. P. and Allan, D. L. 1993. Mineralization of the s-triazine ring of atrazine by stable bacterial mixed cultures. Appl. Environ. Microbiol. 59:16951701.CrossRefGoogle ScholarPubMed
75. Mandelbaum, R. T., Wackett, L. P., and Allan, D. L. 1993. Rapid hydrolysis of atrazine to hydroxyatrazine by soil bacteria. Environ. Sci. Technol. 27:19431946.CrossRefGoogle Scholar
76. Martin, J. P., Farmer, W. J., and Ervin, J. O. 1973. Influence of steam treatment and fumigation of soil on growth and elemental composition of avocado seedlings. Soil Sci. Soc. Am. Proc. 37:5660.CrossRefGoogle Scholar
77. McCormick, L. L. and Hiltbold, A. E. 1966. Microbiological decomposition of atrazine and diuron in soil. Weed Sci. 14:7782.Google Scholar
78. McCusker, V. W., Skipper, H. D., Zublena, J. P., and Gooden, D. T. 1988. Biodegradation of carbamothioates in butylate-history soils. Weed Sci. 36:818823.CrossRefGoogle Scholar
79. McLaren, A. D. 1969. Radiation as a technique in soil biology and biochemistry. Soil Biol. Biochem. 1:6373.CrossRefGoogle Scholar
80. Metge, D. W., Brooks, M. H., Smith, R. L., and Harvey, R. W. 1993. Effect of treated-sewage contamination upon bacterial energy charge, adenine nucleotides, and DNA content in a sandy aquifer on Cape Cod. Appl. Environ. Microbiol. 59:23042310.CrossRefGoogle Scholar
81. Melting, F. B. Jr., ed. 1993. Soil Microbial Ecology. M. Dekker, New York. 646 p.Google Scholar
82. Mirgain, I., Green, G. A., and Monteil, H. 1993. Degradation of atrazine in laboratory microcosms: isolation and identification of the biodegrading bacteria. Environ. Toxicol. Chem. 12:16271634.CrossRefGoogle Scholar
83. Moorman, T. B. 1990. Adaptation of microorganisms in subsurface environments. p. 167180 in Racke, K. D. and Coats, J. R., eds. Enhanced Biodegradation of Pesticides in the Environment. ACS Symposium Ser. No. 426. Am. Chem. Soc., Washington, D.C. CrossRefGoogle Scholar
84. Moorman, T. B. 1988. Populations of EPTC-degrading microorganisms in soils with accelerated rates of EPTC degradation. Weed Sci. 36:96101.CrossRefGoogle Scholar
85. Moorman, T. B. and Harper, S. S. 1989. Transformation and mineralization of metribuzin in surface and subsurface horizons of a Mississippi Delta soil. J. Environ. Qua!. 18:302306.CrossRefGoogle Scholar
86. Mueller, J. G., Skipper, H. D., Lawrence, E. G., and Kline, E. L. 1989. Bacterial stimulation by carbamothioate herbicides. Weed Sci. 37:424427.CrossRefGoogle Scholar
87. Mueller, J. G., Skipper, H. D., and Kline, E. L. 1988. Loss of butylate-utilizing ability by a Flavobacterium . Pestic. Biochem. Physiol. 32:189196.CrossRefGoogle Scholar
88. Novick, N. J., Mukherjee, R., and Alexander, M. 1986. Metabolism of alachlor and propachlor in suspensions of pretreated soils and in samples from ground water aquifers. J. Agric. Food. Chem. 34:721725.CrossRefGoogle Scholar
89. Obrigawitch, T., Wilson, R. G., Martin, A. R., and Roeth, F. W. 1982. The influence of temperature, moisture, and prior EPTC application on the degradation of EPTC in soils. Weed Sci. 30:175181.CrossRefGoogle Scholar
90. Ogram, A., Sayler, G. S., and Barkay, T. 1987. The extraction and purification of microbial DNA from sediments. J. Microbiol. Methods 7:5766.CrossRefGoogle Scholar
91. Parr, J. F., Smith, S., and Willis, G. H. 1970. Soil anaerobiosis: I. Effect of selected environments and energy sources on respiration activities of selected soil microorganisms. Soil Sci. 110:3743.Google Scholar
92. Parr, J. F., Smith, S., and Willis, G. H. 1970. Soil anaerobiosis: II. Effect of selected environments and energy sources on the degradation of DDT. Soil Sci. 110:306312.Google Scholar
93. Phelps, T. J., Hedrick, D. B., Ringelberg, D., Fliermans, C. B., and White, D. C. 1989. Utility of radiotracers activity measurements for subsurface microbiology studies. J. Microbiol. Methods 9:1527.CrossRefGoogle Scholar
94. Ponnamperuma, F. N. 1972. The chemistry of submerged soils. Adv. Agron. 24:2996. Academic Press, New York.Google Scholar
95. Powlson, D. S. and Jenkinson, D. S. 1976. The effects of biocidal treatments on metabolism in soil. II. Gamma irradiation, autoclaving, air-drying and fumigation. Soil Biol. Biochem. 8:179188.CrossRefGoogle Scholar
96. Pramer, D. and Bartha, R. 1972. Preparation and processing of soil samples for biodegradation studies. Environ. Letters 2:217224.CrossRefGoogle Scholar
97. Pusino, A., Gennari, M., Premoli, A., and Gessa, C. 1990. Formation of polyethylene glycol on montmorillonite by sterilization with ethylene oxide. Clays Clay Minerals 38:213215.CrossRefGoogle Scholar
98. Racke, K. D. and Coats, J. R. 1990. Enhanced Biodegradation of Pesticides in the Environment. ACS Symposium Ser. No. 426. Am. Chem. Soc., Washington, D.C. CrossRefGoogle Scholar
99. Rhykerd, R. L., Bischoff, M., and Turco, R. F. 1996. Soil properties affecting the environmental fate of atrazine in the shallow subsurface. (In press).Google Scholar
100. Roeth, F. W. 1986. Enhanced herbicide degradation in soil with repeated applications. Rev. Weed Sci. 2:2466.Google Scholar
101. Roszak, R. B. and Colwell, R. R. 1987. Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51:365379.CrossRefGoogle ScholarPubMed
102. Rozycki, M. and Bartha, R. 1981. Problems associated with the use of azide as an inhibitor of microbial activity in soil. Appl. Environ. Microbiol. 41:833836.CrossRefGoogle ScholarPubMed
103. Schmidt, E. L. and Paul, E. A. 1982. Microscopic methods for soil microorganisms. p. 803814 in Page, A. L. et al., eds. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, 2nd ed. Agron. Monogr. 9. Am. Soc. Agron. and Soil Sci. Soc. Am., Madison, WI.Google Scholar
104. Scott, H. D., Wolf, D. C., and Lavy, T. L. 1982. Apparent adsorption and microbial degradation of phenol by soil. J. Environ. Qual. 11:107112.CrossRefGoogle Scholar
105. Sethunathan, N. and Pathak, M. D. 1971. Development of a diazinon-degrading bacterium in paddy water after repeated applications of diazinon. Can. J. Microbiol. 17:699702.CrossRefGoogle ScholarPubMed
106. Silverman, G. J. 1983. Sterilization by ionizing irradiation. p. 89105 in Block, S. S., ed. Disinfection, Sterilization, and Preservation, 3rd ed. Lea and Febiger, Philadelphia, PA.Google Scholar
107. Sinclair, J. L., Kampbell, D. H., Cook, M. L., and Wilson, J. T. 1993. Protozoa in subsurface sediments from sites contaminated with aviation gasoline or jet fuel. Appl. Environ. Microbiol. 59:467472.CrossRefGoogle ScholarPubMed
108. Skipper, H. D., Gilmour, C. M., and Furtick, W. R. 1967. Microbial versus chemical degradation of atrazine in soils. Soil Sci. Soc. Am. Proc. 31:653656.CrossRefGoogle Scholar
109. Skipper, H. D. and Westermann, D. T. 1973. Comparative effects of propylene oxide, sodium azide, and autoclaving on selected soil properties. Soil Biol. Biochem. 5:409414.CrossRefGoogle Scholar
110. Skipper, H. D., Murdock, E. C., Gooden, D. T., Zublena, J. P., and Amakiri, M. A. 1986. Enhanced herbicide biodegradation in South Carolina soils previously treated with butylate. Weed Sci. 34:558563.CrossRefGoogle Scholar
111. Skipper, H. D., Mueller, J. G., Ward, V. L., and Wagner, S. C. 1986. Microbial degradation of herbicides. p. 457476 in Camper, N. D., ed. Research Methods in Weed Science. 3rd ed. South. Weed Sci. Soc., Champaign, IL.Google Scholar
112. Skipper, H. D. and Volk, V. V. 1972. Biological and chemical degradation of atrazine in three Oregon soils. Weed Sci. 20:344347.CrossRefGoogle Scholar
113. Sparling, G. P. and Cheshire, M. V. 1979. Effects of soil drying and storage on subsequent microbial growth. Soil Biol. Biochem. 11:317319.CrossRefGoogle Scholar
114. Speir, T. W., Cowling, J. C., Sparling, G. P., West, A. W., and Corderoy, D. M. 1986. Effects of microwave radiation on the microbial biomass, phosphatase activity and levels of extractable N and P in a low fertility soil under pasture. Soil Biol. Biochem. 18:377382.CrossRefGoogle Scholar
115. Stare, A. 1942. Mikrobiologicshe Untersuchengen einiger podsoliger Boden Kroatiens. Arch. Mikrobiol. 12:329352.CrossRefGoogle Scholar
116. Steffan, R. J., Goksoyr, J., Bej, A. K., and Atlas, R. M. 1988. Recovery of DNA from soils and sediments. Appl. Environ. Microbiol. 54:29082915.CrossRefGoogle ScholarPubMed
117. Stotzky, G. 1965. Microbial respiration. p. 15501572 in Black, C. A. et al., eds. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Am. Soc. Agron., Inc., Madison, WI.Google Scholar
118. Stotzky, G., Goos, R. D., and Timonin, M. I. 1962. Microbial changes occurring in soil as a result of storage. Plant Soil 16:118.CrossRefGoogle Scholar
119. Thien, S. J., Whitney, D. A., and Karlen, D. L. 1978. Effect of microwave radiation drying on soil chemical and mineralogical analysis. Commun. Soil Sci. Plant Anal. 9:231241.CrossRefGoogle Scholar
120. Thomas, G. W. and Phillips, R. E. 1979. Consequences of water movement in macropores. J. Environ. Qual. 8:149152.CrossRefGoogle Scholar
121. Torsvik, V. L. 1980. Isolation of bacterial DNA from soil. Soil Biol. Biochem. 12:1521.CrossRefGoogle Scholar
122. Truex, M. J., Brockman, F. J., Johnstone, D. J., and Frederickson, J. K. 1992. Effect of starvation on induction of quinoline degradation for a subsurface bacterium in a continuous-flow column. Appl. Environ. Microbiol. 58:23862392.CrossRefGoogle Scholar
123. Turco, R. F. and Konopka, A. 1990. Biodegradation of carbofuran in enhanced and non-enhanced soils. Soil Biol. Biochem. 22:195201.CrossRefGoogle Scholar
124. Wagner, G. H. 1975. Microbial growth and carbon turnover. p. 269305 in Paul, E. A. and McLaren, A. D., eds. Soil Biochemistry, Vol. 3. Marcel Dekker, New York.Google Scholar
125. Wainwright, M., Killham, K., and Diprose, M. F. 1980. Effects of 2450 MHz microwave radiation on nitrification, respiration and S-oxidation in soil. Soil Biol. Biochem. 12:489493.CrossRefGoogle Scholar
126. Wehtje, G. R., Spalding, R. F., Burnsides, O. C., Lowry, S. R., and Cleavitt, J. R. 1983. Biological significance and fate of atrazine under aquifer conditions. Weed Sci. 31:610618.CrossRefGoogle Scholar
127. Wilson, R. G. 1984. Accelerated degradation of thiocarbamate herbicides in soil with prior thiocarbamate herbicide exposure. Weed Sci. 32:264268.CrossRefGoogle Scholar
128. Wolf, D. C., Dao, T. H., Scott, H. D., and Lavy, T. L. 1989. Influence of sterilization methods on selected soil microbiological, physical, and chemical properties. J. Environ. Qual. 18:3944.CrossRefGoogle Scholar
129. Wolf, D. C. and Skipper, H. D. 1994. Soil sterilization. p. 4151 in Weaver, R. W. et al., eds. Methods of Soil Analysis, Part 2. Microbiological and Biochemical Properties. Soil Sci. Soc. Am. Book Series, No. 5. Madison, WI.CrossRefGoogle Scholar
130. Wolf, D. C., Legg, J. O., and Boutton, T. W. 1994. Isotopic methods for the study of soil organic matter dynamics. p. 865906 in Weaver, R. W. et al., eds. Methods of Soil Analysis, Part 2: Microbiological and Biochemical Properties. Soil Sci. Soc. Am. Book Series, No. 5. Madison, WI.CrossRefGoogle Scholar
131. Wollum, A. G. II. 1982. Cultural methods for soil microorganisms. p. 781802 in Page, A. L. et al., eds. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, 2nd ed. Agron. Monogr. 9. Am. Soc Agron. and Soil Sci. Soc. Am., Madison, WI.Google Scholar
132. Wollum, A. G. II. 1994. Soil Sampling for microbiological analysis. p. 114 in Weaver, R. W. et al., eds. Methods of Soil Analysis, Part 2: Microbiological and Biochemical Properties. Soil Sci. Soc. Am. Book Series, No. 5. Madison, WI.CrossRefGoogle Scholar
133. Wollum, A. G. II and Cassel, D. K. 1978. Transport of microorganisms in sand columns. Soil Sci. Soc. Am. J. 42:7276.CrossRefGoogle Scholar
134. Wollum, A. G. II and Cassel, D. K. 1984. Spatial variability of Rhizobium japonicum in two North Carolina soils. Soil Sci. Soc. Am. J. 48:10821086.CrossRefGoogle Scholar
135. Zablotowicz, R. M., Hoagland, R. L., and Locke, M. A. 1994. Glutathione s-transferase activity in rhizosphere bacteria and the potential for herbicide detoxification. p. 184198 in Anderson, T. A. and Coats, J. R., eds. Bioremediation through Rhizosphere Technology. ACS Symposium Ser. No. 563. Am. Chem. Soc., Washington, D.C.CrossRefGoogle Scholar
136. Zibilske, L. 1994. Carbon mineralization. p. 835863 in Weaver, R. W. et al., eds. Methods of Soil Analysis, Part 2: Microbiological and Biochemical Properties. Soil Sci. Soc. Am. Book Series, No. 5. Madison, WI.CrossRefGoogle Scholar