Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T05:22:52.314Z Has data issue: false hasContentIssue false

Morphologic and Isozyme Variation in Barnyardgrass (Echinochloa) Weed Species

Published online by Cambridge University Press:  12 June 2017

María J. Asíns
Affiliation:
Researchers Instituto Valenciano de Investigaciones Agrarias, 46113 Moncada, Valencia, Spain
José L. Carretero
Affiliation:
Department of Botany, Escuela Técnica Superior de Ingenieros Agrónomos. Universidad Politécnica de Valencia, 46020 Valencia, Spain
Angelina Del Busto
Affiliation:
Researchers Instituto Valenciano de Investigaciones Agrarias, 46113 Moncada, Valencia, Spain
Emilio A. Carbonell
Affiliation:
Researchers Instituto Valenciano de Investigaciones Agrarias, 46113 Moncada, Valencia, Spain
Diego Gómez De Barreda*
Affiliation:
Researchers Instituto Valenciano de Investigaciones Agrarias, 46113 Moncada, Valencia, Spain
*
Corresponding author: D. Gómez de Barreda.

Abstract

Mature seed samples from 35 populations of Echinochloa were collected in fields of the Eastern Iberian Peninsula and evaluated for nine morphologic traits. Four kernels per population were separately assayed for four isozyme systems. Genetic variability components were studied by correspondence analysis and chi-square distance using the isozyme pattern as variables. Genetic uniformity was found within populations as would be expected from their autogamous mating system. Intraspecific isozyme variability covered a wide spectrum, from none in E. colonum to very high in E. oryzoides. All the populations of E. colonum clustered together based on morphometric and isozymatic characters, and also those of E. oryzicola, but were distinct from the populations of all other species. Populations of E. crus-galli, E. hispidula, and E. oryzoides clustered within species based on morphology, but did not cluster based on isozymatic characters, being mixed in the isozymatic dendrogram. Our results support the hypothesis that E. hispidula and E. oryzoides are infraspecific taxa of E. crus-galli. The large between-population genetic variability may explain the differential response to herbicides within a given species and indicate that weed specialists should study the differences in response to a wide spectrum of Echinochloa populations to several herbicides instead of testing many plants from a small number of populations.

Type
Research
Copyright
Copyright © 1999 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Asíns, M. J., Benito, C., and Pérez de la Vega, M. 1983. A comparative study of the changes of peroxidase patterns during wheat, rye and triticale germination. Am. J. Bot. 12:33933398.Google Scholar
Asíns, M. J. and Carbonell, E. A. 1986. A comparative study on variability and phylogeny of Triticum species. Theor. Appl. Genet. 72:551558.Google Scholar
Asíns, M. J. and Carbonell, E. A. 1987. Concepts involved in measuring genetic variability and its importance in conservation of plant genetic resources. Evol. Trends Plants 1:5162.Google Scholar
Asíns, M. J. and Carbonell, E. A. 1989. Distribution of genetic variability in a durum wheat world collection. Theor. Appl. Genet. 77:287294.Google Scholar
Baltazar, A. M. and Smith, R. J. Jr. 1994. Propanil-resistant barnyardgrass (Echinochloa crus-galli) control in rice (Oryza sativa). Weed Technol. 8:576581.Google Scholar
Barrett, S.C.H. and Shore, J. S. 1989. Isozyme variation in colonizing plants. In Soltis, D. E. and Soltis, P. S., eds. Isozymes in Plant Biology. Portland, OR: Dioscorides. pp. 106126.Google Scholar
Benzecri, J. P. 1970. Distance distributionelle et métrique de chi-deux en analyse factorielle des correspondances. Paris: Laboratoire de Statistique Mathématique, Université de Paris.Google Scholar
Benzecri, J. P. and Benzecri, D. 1980. Pratique de l'analyse des données. 1. Analyse de correspondances. Exposé élémentaire. Paris: Dunod.Google Scholar
Bretó, M. P., Asíns, M. J., and Carbonell, E. A. 1993. Genetic variability in Lycopersicon species and their genetic relationships. Theor. Appl. Genet. 86:113120.Google Scholar
Carretero, J. L. 1981. El género Echinochloa Beauv. en el suroestc de Europa. An. Jard. Bot. Madr. 38:91108.Google Scholar
Carretero, J. L. 1989. Variación en la sensibilidad al propanil del género Echinochloa en los arrozales valencianos (España). Proc. 4th Eur. Weed Res. Soc. Mediterr. Symp. 2:407411.Google Scholar
Carretero, J. L., Gómez de Barreda, D., Balasch, S., del Busto, A., and Lladr, M. A.ó. 1997. Variación en la sensibilidad al molinato del género Echinochloa de los arrozales valencianos. Actas 6° Congreso Soc. Esp. Malherbología (Valencia). pp. 247251.Google Scholar
Devesa, J. A. 1987. Echinochloa Beauv. In Valdés, B., Talavera, S., and Fernández Galiano, E., eds. Flora Vascular de Andalucía Occidental 3. Barcelona: Ketres. pp. 402404.Google Scholar
Devesa, J. A., Ruíz, T., Viera, M. C., Tormo, R., Vázquez, F., Carrasco, J. P., Ortega, A., and Pastor, J. 1991. Contribución al conocimiento cariológico de las Poaceae en Extremadura (España), III. Bol. Soc. Brot. Sér. 2 64:3574.Google Scholar
Escofier, B. 1979. Traitement simultané de variables qualitatives et quantitatives en analyse factorielle. Cah. Anal. Donées 4:137146.Google Scholar
Fischer, A. J., Ramírez, H. V., Chávez, A. L., Granados, E., and Trujillo, D. 1996. Resistance to propanil in populations of Echinochloa colona . Proc. Int. Symp. Weed & Crop Resistance to Herbicides. pp. 1718.Google Scholar
Gasquez, J. and Compoint, J. P. 1976. Apport de l'électrophorèse en courant pulsé à la taxonomie d'Echinochloa crus-galli (L.) P. B. Ann. Amélior. Plantes 26:345355.Google Scholar
Gasquez, J. and Compoint, J. P. 1977. Mise en évidence de la Variabilité génétique intrapopulation par l'utilisation d'isoenzymes foliaires chez Echinochloa crus-galli (L.) P. B. Ann. Amélior. Plantes 27:267278.Google Scholar
Giannopolitis, C. N. and Vassiliou, G. 1989. The Echinochloa crus-galli complex in rice, morphological variants and tolerance to propanil in Greece. In Carvalloso, R. and Noyé, G., eds. Importance and Perspectives on Herbicide Resistant Weeds. Luxembourg: Off. Publ. Euro. Community. pp. 2328.Google Scholar
Gómez de Barreda, D., Carretero, J. L., del Busto, A., Asíns, M. J., Carbonell, E. A., and Lorenzo, E. 1996. Response of Echinochloa spp. (barnyardgrass) populations to quinclorac. Proc. Int. Symp. Weed & Crop Resistance to Herbicides. pp. 157158.Google Scholar
González-Andrés, F., Pita, J. M., and Ortiz, J. M. 1996. Caryopsis isoenzymes of Echinochloa weed species as an aid for taxonomie discrimination. J. Hortic. Sci. 71:187193.CrossRefGoogle Scholar
Kim, K. U., Kim, J. H., and Lee, I. J. 1989. Biochemical identification of Echinochloa species collected in Korea. Proc. 12th Asian–Pacific Weed Sci. Soc. Conf. 2:519531.Google Scholar
Lazarides, M. 1980. The Tropical Grasses of Southeast Asia (Excluding Bamboos). Vaduz, Liechtenstein: J. Cramer.Google Scholar
López-Martínez, N., Finch, R. P., Marshall, G., and de Prado, R. 1997. Molecular characterization of herbicide resistance in Echinochloa spp. In de Prado, R., Jorrin, J., and García Torres, L., eds. Weed and Crop Resistance to Herbicides. Kluwer Acad. Publ. pp. 199205.CrossRefGoogle Scholar
López-Martínez, N., Hidalgo, J., Pujadas, A., Marshall, G., and de Prado, R. 1996. Resistance of Echinochloa spp. to atrazine and quinclorac. Proc. Int. Symp. Weed & Crop Resistance to Herbicides. pp. 2325.Google Scholar
Michael, P. W. 1983. Taxonomy and distribution of Echinochloa species with special reference to their occurrence as weed of rice. Proc. Conf. Weed Control Rice. Los Baños, Philippines. pp. 291306.Google Scholar
Mujer, C. V., Rumpho, M. E., Lin, J. J., and Kennedy, R. A. 1993. Constitutive and inducible aerobic and anaerobic stress proteins in the Echinochloa complex and rice. Plant Physiol. 101:217226.CrossRefGoogle ScholarPubMed
Smith, R. J. Jr. 1974. Competition of barnyardgrass with rice cultivars. Weed Sci. 22:423426.Google Scholar
Smith, R. J. Jr. 1983. Weeds of major economic importance in rice and yield losses due to weed competition. Proc. Conf. Weed Control Rice. Los Baños, Philippines. pp. 1936.Google Scholar
Smith, R. J. Jr., Costello, T. A., and VanDettender, K. W. 1992. Weed impact on U.S. rice. Proc. First Int. Weed Control Congr. 2:484486.Google Scholar
Vallejos, C. E. 1983. Enzyme activity staining. In Tanksley, S. D. and Orton, T. J., eds. Isozymes in Plant Genetics and Breeding. Amsterdam: Elsevier. pp. 469516.CrossRefGoogle Scholar
Ward, J. H. 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58:236244.CrossRefGoogle Scholar
Wendel, J. F. and Weeden, N. F. 1989. Visualization and interpretation of plant isozymes. In Soltis, D. E. and Soltis, P. S., eds. Isozymes in Plant Biology. Portland, OR: Dioscorides. pp. 545.Google Scholar
Wilson, A. C., Carlson, S. S., and White, T. J. 1977. Biochemical evolution. Annu. Rev. Biochem. 46:473639.Google Scholar
Wilson, A. C., Sarich, V. M., and Maxson, L. R. 1974. The importance of gene rearrangement in evolution: evidence from studies of rates of chromosomal, protein, and anatomical evolution. Proc. Natl. Acad. Sci. USA 71:30283030.CrossRefGoogle ScholarPubMed
Yabuno, T. 1966. Biosystematic study of the genus Echinochloa . Jpn. J. Bot. 19:277323.Google Scholar
Yabuno, T. 1984. A biosystematic study on Echinochloa oryzoides (Ard.) Fritsch. Cytologia Jpn. 49:673678.Google Scholar
Yamasue, Y., Koda, S., Ueki, K., and Matsunaka, S. 1981. Variation in growth, seed dormancy and herbicide susceptibility among strains of Echinochloa oryzicola Vasing. Weed Res. Jpn. 26:613.Google Scholar