Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T07:23:42.690Z Has data issue: false hasContentIssue false

Palmer Amaranth (Amaranthus palmeri) Control by Glufosinate plus Fluometuron Applied Postemergence to WideStrike® Cotton

Published online by Cambridge University Press:  20 January 2017

Kelly A. Barnett
Affiliation:
University of Tennessee, Department of Plant Sciences, 605 Airways Blvd., Jackson, TN 38301
A. Stanley Culpepper
Affiliation:
University of Georgia, Department of Crop and Soil Sciences, P. O. Box 478, Tifton, GA 31794
Alan C. York
Affiliation:
North Carolina State University, Department of Crop Science, Campus Box 7620, Raleigh, NC 27695
Lawrence E. Steckel*
Affiliation:
University of Tennessee, Department of Plant Sciences, 605 Airways Blvd., Jackson, TN 38301
*
Corresponding author's Email: lsteckel@utk.edu

Abstract

Glyphosate-resistant (GR) weeds, especially GR Palmer amaranth, are very problematic for cotton growers in the Southeast and Midsouth regions of the United States. Glufosinate can control GR Palmer amaranth, and growers are transitioning to glufosinate-based systems. Palmer amaranth must be small for consistently effective control by glufosinate. Because this weed grows rapidly, growers are not always timely with applications. With widespread resistance to acetolactate synthase-inhibiting herbicides, growers have few herbicide options to mix with glufosinate to improve control of larger weeds. In a field study using a WideStrike® cotton cultivar, we evaluated fluometuron at 140 to 1,120 g ai ha−1 mixed with the ammonium salt of glufosinate at 485 g ae ha−1 for control of GR Palmer amaranth 13 and 26 cm tall. Standard PRE- and POST-directed herbicides were included in the systems. Glufosinate alone injured the WideStrike® cotton less than 10%. Fluometuron increased injury up to 25% but did not adversely affect yield. Glufosinate controlled 13-cm Palmer amaranth at least 90%, and there was no improvement in weed control nor a cotton yield response to fluometuron mixed with glufosinate. Palmer amaranth 26 cm tall was controlled only 59% by glufosinate. Fluometuron mixed with glufosinate increased control of the larger weeds up to 28% and there was a trend for greater yields. However, delaying applications until weeds were 26 cm reduced yield 22% relative to timely application. Our results suggest fluometuron mixed with glufosinate may be of some benefit when attempting to control large Palmer amaranth. However, mixing fluometuron with glufosinate is not a substitute for a timely glufosinate application.

Las malezas resistentes a glyphosate (GR), especialmente Amaranthus palmeri GR, son muy problemáticas para los productores de algodón en las regiones Sureste y Sur-medio de los Estados Unidos. Glufosinate puede controlar A. palmeri GR, y los productores están cambiando a los sistemas basados en glufosinate. A. palmeri debe estar pequeño para el control consistentemente efectivo con glufosinate. Debido a que esta maleza crece rápidamente, los productores no siempre realizan las aplicaciones a tiempo. Con la resistencia a herbicidas inhibidores de acetolactate synthase ampliamente distribuida, los productores tienen pocas opciones de herbicidas para mezclar con glufosinate para así mejorar el control de malezas más grandes. En un estudio de campo usando un cultivar de algodón WideStrike®, evaluamos fluometuron a 140 a 1,120 g ai ha−1 en mezcla con sal amónica de glufosinate a 485 g ae ha−1 para el control de A. palmeri GR con alturas de 13 y 26 cm. Herbicidas estándar en PRE y POST-dirigido se incluyeron en los sistemas. Glufosinate solo dañó el algodón WideStrike® menos de 10%. Fluometuron incrementó el daño hasta 25%, pero no afectó el rendimiento en forma adversa. Glufosinate controló A. palmeri de 13 cm al menos 90%, y no hubo mejora en el control de malezas ni respuesta en el rendimiento del algodón al fluometuron en mezcla con glufosinate. A. palmeri de 26 cm de altura fue controlado solamente en 59% con glufosinate. Fluometuron mezclado con glufosinate incrementó el control de las malezas más grandes hasta un 28% y hubo una tendencia a obtener mayores rendimientos. Sin embargo, al retrasar las aplicaciones hasta que las malezas tuvieron 26 cm redujo el rendimiento 22% en relación a la aplicación en el momento adecuado. Nuestros resultados sugieren que fluometuron mezclado con glufosinate podría ser de algún beneficio cuando se intenta controlar A. palmeri más grandes. Sin embargo, el mezclar fluometuron con glufosinate no es un sustituto para la aplicación a tiempo con glufosinate.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Agbios. 2006. GM Database Product Description: DAS-24236-5, DAS21023-5, MON-88913-8. http://cera-gmc.org/index.php?action5gm_crop_database&mode5ShowProd&data. 5MON88913&frmat5LONG. (DAS-21023-5 X DAS-24236-5 X MON88913). Accessed: October 1, 2012.Google Scholar
Alcober, E.A.L., Burgos, N. R., Tseng, T. M., Salas, R. A., Estorninos, L. E., and Schaedler, C. E. 2011. Frequency and degree of resistance to glyphosate in Palmer amaranth populations from Arkansas. Proc. South. Weed Sci. Soc. 64:341.Google Scholar
Anonymous. 2012. Liberty 280 SL herbicide label. http://www.cdms.net/LDat/IdUA5000.pdf. Accessed: October 1, 2012. Research Triangle Park, NC: Bayer CropScience.Google Scholar
Askew, S. D. and Wilcut, J. W. 1999. Cost and weed management with herbicide programs in glyphosate-resistant cotton (Gossypium hirsutum). Weed Technol. 13:308313.Google Scholar
Barnett, K. A., Mueller, T. C., and Steckel, L. E. 2012. Glyphosate-resistant giant ragweed (Ambrosia trifida) control in WideStrike Flex cotton. Weed Technol. In press. DOI: .Google Scholar
Barnett, K. A., Steckel, L. E., York, A. C., and Culpepper, A. S. 2011. Influence of glufosinate timing on cotton growth and yield. Page 1562 in Proceedings of the 2011 Beltwide Cotton Conferences. Memphis, TN National Cotton Council of America.Google Scholar
Blair-Kerth, L. K., Dotray, P. A., Keeling, J. W., Gannaway, J. R., Oliver, J. J., and Quisenberry, J. E. 2001. Tolerance of transformed cotton to glufosinate. Weed Sci. 49:375380.Google Scholar
Bond, J. A., Oliver, L. R., and Stephenson, D. O. IV. 2006. Response of Palmer amaranth (Amaranthus palmeri) accessions to glyphosate, fomesafen, and pyrithiobac. Weed Technol. 20:885892.CrossRefGoogle Scholar
Branson, J. W., Smith, K. L., and Barrentine, J. L. 2005. Comparison of trifloxysulfuron and pyrithiobac in glyphosate-resistant and bromoxynil-resistant cotton. Weed Technol. 19:404410.Google Scholar
Burke, I. C., Troxler, S. C., Askew, S. D., Wilcut, J. W., and Smith, W. D. 2005. Weed management systems in glyphosate-resistant cotton. Weed Technol. 19:422429.CrossRefGoogle Scholar
Byrd, J. D. Jr. and York, A. C. 1987. Interaction of fluometuron and MSMA with sethoxydim and fluazifop. Weed Sci. 35:270276.Google Scholar
Carmer, S. G., Nyquist, W. E., and Walker, W. M. 1989. Least significant differences for combined analysis of experiments with two or three-factor treatment designs. Agron. J. 81:665672.Google Scholar
Corbett, J. L., Askew, S. D., Thomas, W. E., and Wilcut, J. W. 2004. Weed efficacy evaluations for bromoxynil, glufosinate, glyphosate, pyrithiobac, and sulfosate. Weed Technol. 18:443453.Google Scholar
Culpepper, A. S. 2012. Weed response to herbicides used in cotton. Pages 96100. in 2012 Georgia Cotton Production Guide. http://www.commodities.caes.uga.edu/fieldcrops/cotton. Accessed October 1, 2012.Google Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54:620626.Google Scholar
Culpepper, A. S., Webster, T. M., Sosnoskie, L. M., and York, A. C. 2010. Glyphosate-resistant Palmer amaranth in the United States. Pages 195212 in Nandula, V. K., ed. Glyphosate Resistance in Crops and Weeds. New York, NY =Wiley.Google Scholar
Culpepper, A. S., Whitaker, J. R., MacRae, A. W., and York, A. C. 2008. Distribution of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Georgia and North Carolina during 2005 and 2006. J. Cotton Sci. 12:306310.Google Scholar
Culpepper, A. S. and York, A. C. 1997. Weed management in no-tillage bromoxynil-tolerant cotton (Gossypium hirsutum). Weed Technol. 11:335345.CrossRefGoogle Scholar
Culpepper, A. S. and York, A. C. 1998. Weed management in glyphosate-tolerant cotton. J. Cotton Sci. 2:174185.Google Scholar
Culpepper, A. S. and York, A. C. 1999. Weed management and net returns with transgenic, herbicide-resistant, and nontransgenic cotton (Gossypium hirsutum). Weed Technol. 13:411420.Google Scholar
Culpepper, A. S., York, A. C., Roberts, P., and Whitaker, J. R. 2009. Weed control and crop response to glufosinate applied to ‘PHY 485 WRF' cotton. Weed Technol. 23:356362.Google Scholar
Dodds, D. M., Barber, L. T., Buehring, N. W., Collins, G. D., and Main, C. L. 2011. Tolerance of WideStrike™ cotton to glufosinate. Page 1542 in Proceedings of the 2011 Beltwide Cotton Conferences. Memphis, TN National Cotton Council of America.Google Scholar
Everman, W. J., Clewis, S. B., York, A. C., and Wilcut, J. W. 2009. Weed control and yield with flumioxazin, fomesafen, and s-metolachlor systems for glufosinate-resistant cotton residual weed management. Weed Technol. 23:391397.Google Scholar
Faircloth, W. H., Patterson, M. G., Monks, C. D., and Goodman, W. R. 2001. Weed management programs for glyphosate-tolerant cotton (Gossypium hirsutum). Weed Technol. 15:544551.CrossRefGoogle Scholar
Frans, R., Talbert, R., Marx, D., and Crowley, H. 1986. Experimental design and techniques for measuring and analyzing plant responses to weed control practices. Pages 2946 in Camper, N. D., ed. Research Methods in Weed Science. Champaign, IL Southern Weed Science Society.Google Scholar
Gardner, A. P., York, A. C., Jordan, D. L., and Monks, D. W. 2006. Management of annual grasses and Amaranthus spp. in glufosinate-resistant cotton. J. Cotton Sci. 10:328338.Google Scholar
Gianessi, L. P. 2005. Economic and herbicide use impacts of glyphosate-resistant crops. Pest Manag. Sci. 61:214245.Google Scholar
Gianessi, L. P. 2008. Economic impacts of glyphosate resistant crops. Pest Manag. Sci. 64:346352.Google Scholar
Givens, W. A., Shaw, D. R., Johnson, W. G., Weller, S. C., Young, B. G., Wilson, R. G., Owen, M. D. K., and Jordan, D. 2009. A grower survey of herbicide use patterns in glyphosate-resistant cropping systems. Weed Technol. 23:156161.CrossRefGoogle Scholar
Guthrie, D. S. and York, A. C. 1989. Cotton (Gossypium hirsutum) development and yield following fluometuron postemergence applied. Weed Technol. 3:501504.Google Scholar
Heap, I. M. 2012. International survey of herbicide resistant weeds. http://www.weedscience.org. Accessed: October 1, 2012.Google Scholar
Hoffner, A. E. 2012. Distribution of Herbicide-Resistant Palmer Amaranth (Amaranthus palmeri) in North Carolina and Management in Soybeans (Glycine max). . Raleigh, NC. North Carolina State University. 70 p.Google Scholar
Horak, J. J. and Loughin, T. M. 2000. Growth analysis of four Amaranthus species. Weed Sci. 8:347355.CrossRefGoogle Scholar
Koger, C. H., Burke, I. C., Miller, D. K., Kendig, J. A., Reddy, K. N., and Wilcut, J. W. 2007. MSMA antagonizes glyphosate and glufosinate efficacy on broadleaf and grass weeds. Weed Technol. 21:159165.Google Scholar
MacRae, A. W., Culpepper, A. S., Webster, T. M., Sosnoskie, L. M., and Kichler, J. M. 2008. Glyphosate-resistant Palmer amaranth competition with Roundup Ready cotton. Page 1696 in Proceedings of the 2008 Beltwide Cotton Conferences. Memphis, TN National Cotton Council of America.Google Scholar
Main, C. L. and Allen, F. L. 2011. University of Tennessee Cotton Variety Test Results 2011. PB 1742.Google Scholar
Morgan, G. D., Baumann, P. A., and Chandler, J. M. 2001. Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technol. 15:408412.Google Scholar
[NCSU] North Carolina State University. 2011. Official Variety Trials. http://www.ncovt.com. Accessed: October 1, 2012.Google Scholar
Price, A. J., Koger, C. H., Wilcut, J. W., Miller, D., and van Santen, E. 2008. Efficacy of residual and non-residual herbicides used in cotton production systems when applied with glyphosate, glufosinate, or MSMA. Weed Technol. 22:459466.Google Scholar
Rowland, M. W., Murray, D. S., and Verhalen, L. M. 1999. Full-season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci. 47:305309.Google Scholar
Sauer, J. 1957. Recent migration and evolution of the dioecious amaranths. Evolution. 11:1131.Google Scholar
Scott, G. H., Askew, S. D., Bennett, A. C., and Wilcut, J. W. 2001. Economic evaluation of HADSS™ computer program for weed management in nontransgenic and transgenic cotton. Weed Sci. 49:549557.Google Scholar
Smith, D. T., Baker, R. V., and Steele, G. L. 2000. Palmer amaranth (Amaranthus palmeri) impacts on yield, harvesting, and ginning in dryland cotton. Weed Technol. 14:122126.Google Scholar
Snipes, C. E. and Byrd, J. D. Jr. 1994. The influence of fluometuron and MSMA on cotton yield and fruiting characteristics. Weed Sci. 42:210215.Google Scholar
Steckel, G. J. 1996. Efficacy of glufosinate and weed control in transformed corn and soybean. Ph.D. dissertation. University of Illinois, Urbana-Champaign, IL. 23-D-15. P. 52.Google Scholar
Steckel, L. E. 2007. The dioecious Amaranthus spp.: here to stay. Weed Technol. 21:567570.Google Scholar
Steckel, L. E., Craig, C. C., and Hayes, R. M. 2006. Glyphosate-resistant horseweed (Conyza canadensis) control with glufosinate prior to planting no-till cotton (Gossypium hirsutum). Weed Technol. 20:10471051.Google Scholar
Steckel, L. E., Main, C. L., Ellis, A. T., and Mueller, T. C. 2008. Palmer amaranth (Amaranthus palmeri) in Tennessee has low level glyphosate resistance. Weed Technol. 22:119123.Google Scholar
Steckel, L. E., Stephenson, D. O., Bond, J. A., Stewart, S. D., and Barnett, K. A. 2012. Evaluation of WideStrike™ Flex cotton response to over-the-top glufosinate tank mixtures. J. Cotton Sci. 16:8895.Google Scholar
Tharp, B. E. and Kells, J. J. 2002. Residual herbicides used in combination with glyphosate and glufosinate in corn (Zea mays). Weed Technol. 16:274281.Google Scholar
[USDA-AMS] United States Department of Agriculture – Agricultural Marketing Service. 2012. Cotton Varieties Planted 2012 Crop. http://www.ams.usda.gov/mnreports/cnavar.pdf. Accessed: October 1, 2012.Google Scholar
[UGA] University of Georgia. 2010. Peanut, Cotton, and Tobacco Performance Test. http://www.swvt.uga.edu/pct-tests.html. Accessed: October 1, 2012.Google Scholar
Webster, T. M. 2009. Weed survey—southern states: broadleaf crops subsection. Proc. South. Weed Sci. Soc. 62:509524.Google Scholar
Whitaker, J. R., York, A. C., Jordan, D. L., and Culpepper, A. S. 2011. Weed management with glyphosate- and glufosinate-based systems in PHY 485 WRF Cotton. Weed Technol. 25:183191.Google Scholar
Wilson, D. G. Jr., York, A. C., and Jordan, D. L. 2007. Effect of row spacing on weed management in glufosinate-resistant cotton. Weed Technol. 21:489495.CrossRefGoogle Scholar
Wise, A. M., Grey, T. L., Prostko, E. P., Vencill, W. K., and Webster, T. M. 2009. Establishing the geographical distribution and level of acetolactate synthase resistance to Palmer amaranth (Amaranthus palmeri) accessions in Georgia. Weed Technol. 23:214220.CrossRefGoogle Scholar
York, A. C. 2012. Weed management in cotton. Pages 66123. in 2012 Cotton Information. Publ. AG-417. Raleigh, NC: North Carolina Cooperative Extension Service. http://www.cotton.ncsu.edu/information/taggedbooknew.pdf. Accessed: October 1, 2012.Google Scholar
Young, B. G. 2006. Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol. Pages 301307.Google Scholar