Published online by Cambridge University Press: 29 November 2019
A field study was conducted during the 2016 and 2017 crop seasons at the LSU AgCenter H. Rouse Caffey Rice Research Station to evaluate weed control and rice yield after quizalofop-p-ethyl applications in water-seeded coenzyme A carboxylase (ACCase)–resistant ‘PVLO1’ long-grain rice production utilizing different flood systems, application timings, and quizalofop rates. The initial application of quizalofop was applied at five timings beginning when ‘PVLO1’ rice was at the coleoptile stage (PEG) through the one- to two-tiller stage. A total quizalofop rate of 240 g ai ha–1 was split into two applications: 97 followed by 143 g ha–1 or 120 followed by 120 g ai ha–1 in both pinpoint and delayed flood water-seeded management systems. A second quizalofop application was applied 14 d after initial treatment (DAIT). At 14 DAIT, a reduction in control of barnyardgrass and red rice was observed by delaying the initial quizalofop application to the two- to four-tiller stage compared with rice treated at earlier growth stages. At 42 DAIT, control of barnyardgrass was 94% to 96%, and red rice was 98% following the second application of quizalofop, regardless of initial application timing. Rice treated with quizalofop at the PEG and two- and three-leaf stage resulted in a rice height of 104 cm at harvest compared with 96 to 100 cm when the initial application of quizalofop was delayed to later growth stages. Applying the initial application of quizalofop to rice at the PEG timing in the pinpoint or the delayed flood system resulted in a total gross value per hectare of $450 and $590, respectively. Within each flood system, delaying the initial application of quizalofop to the one- to two-tiller stage resulted in a gross per-hectare value reduction of $100 ha-1 in the pinpoint flood and $110 ha-1 in the delayed flood.
Associate Editor: Jason Bond, Mississippi State University